Mini-HoTT is a basic Agda library which contains basic definitions and results in Univalent type theory. There is no guarantee whatsoever of any kind. At the moment, this library suffers of many changes without any warning.
- Website documentation: https://mini-hott.readthedocs.io/
The library should work with the Agda latest version, and it tested with (v 2.6.1).
$ git clone http://github.com/jonaprieto/mini-hottFor newcomers, the easiest way to install a library is using agda-pkg
You can run the following commands to install it:
$ pip3 install agda-pkg
$ apkg init
$ apkg install --github jonaprieto/mini-hottAfter installing the sources, include at the top of your file the following line:
open import MiniHoTT.. toctree:: :caption: Table of Contents :maxdepth: 2 src/Intro src/MiniHoTT src/BasicTypes src/BasicFunctions src/DecidableEquality src/AlgebraOnPaths src/AlgebraOnDependentPaths src/Transport src/TransportLemmas src/CoproductIdentities src/DependentAlgebra src/FibreType src/HomotopyType src/HomotopyLemmas src/EquivalenceType src/QuasiinverseType src/QuasiinverseLemmas src/BiinverseEquivalenceType src/HalfAdjointType src/EquivalenceReasoning src/BasicEquivalences src/PiPreserves src/SigmaPreserves src/SigmaEquivalence src/UnivalenceAxiom src/FunExtAxiom src/UnivalenceLemmas src/UnivalenceIdEquiv src/UnivalenceTransport src/FunExtTransport src/FunExtTransportDependent src/HLevelTypes src/HedbergLemmas src/HLevelLemmas src/TypesofMorphisms src/SectionsAndRetractions src/Rewriting src/SetTruncationType src/ProductIdentities src/SuspensionType src/IntervalType src/TruncationType src/QuotientType src/CircleType src/FundamentalGroupType src/MonoidType src/RelationType src/IntegerType src/GroupType src/NaturalType src/Connectedness src/TheAxiomOfChoice
- Theory
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. 2013.
- The Homotopy Type Theory and Univalent Foundations CAS project. Symmetry Book. 2020.
- Escardo, M. Introduction to Univalent Foundations of Mathematics with Agda. 2019.
- Rikje, E. Introduction to Homotopy Type Theory. 2019.
- Implementation: