全连接神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(512, 512)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(512, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
return x完成FashionMnist的训练,epcho:20,lr:0.01,batch:64
LeNet5
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, 1, 2)
self.pool = nn.AvgPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5, 1)
self.pool2 = nn.AvgPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool2(x)
x = x.view(-1, 16 * 5 * 5)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x完成Mnist的训练,epcho:10,lr:0.001,batch:64
猫狗实验 Cats and Dogs
详细信息见文件内的README.md
股票预测 LSTM
详细信息见文件内的README.md
Seq 2 Seq
# 模型定义:编码器
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input_tensor, hidden_tensor):
embedded = self.embedding(input_tensor).view(1, 1, -1)
output, hidden = self.gru(embedded, hidden_tensor)
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
# 模型定义:基础解码器(无注意力)
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input_tensor, hidden_tensor):
embedded = self.embedding(input_tensor).view(1, 1, -1)
embedded = F.relu(embedded)
output, hidden = self.gru(embedded, hidden_tensor)
output = self.softmax(self.out(output[0]))
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
# 模型定义:注意力解码器
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input_tensor, hidden_tensor, encoder_outputs):
embedded = self.embedding(input_tensor).view(1, 1, -1)
embedded = self.dropout(embedded)
# 计算注意力权重
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden_tensor[0]), 1)), dim=1
)
attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0))
# 合并上下文向量和嵌入向量
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
# 输入GRU层
output, hidden = self.gru(output, hidden_tensor)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)完成Seq2Sqe的训练,n_iters:750,lr:0.01,hidden_size:256
基于多头注意力机制的文本分类
详细信息见文件内的README.md