Tags: coding

253

Codestin Search App

Thursday, January 8th, 2026

Tuesday, December 30th, 2025

The Future of Software Development is Software Developers – Codemanship’s Blog

The hard part of computer programming isn’t expressing what we want the machine to do in code. The hard part is turning human thinking – with all its wooliness and ambiguity and contradictions – into computational thinking that is logically precise and unambiguous, and that can then be expressed formally in the syntax of a programming language.

That was the hard part when programmers were punching holes in cards. It was the hard part when they were typing COBOL code. It was the hard part when they were bringing Visual Basic GUIs to life (presumably to track the killer’s IP address). And it’s the hard part when they’re prompting language models to predict plausible-looking Python.

The hard part has always been – and likely will continue to be for many years to come – knowing exactly what to ask for.

Sunday, December 7th, 2025

The Jeopardy Phenomenon – Chris Coyier

AI has the Jeopardy Phenomenon too.

If you use it to generate code that is outside your expertise, you are likely to think it’s all well and good, especially if it seems to work at first pop. But if you’re intimately familiar with the technology or the code around the code it’s generating, there is a good chance you’ll be like hey! that’s not quite right!

Not just code. I’m astounded by the cognitive dissonance displayed by people who say “I asked an LLM about {topic I’m familiar with}, and here’s all the things it got wrong” who then proceed to say “It was really useful when I asked an LLM for advice on {topic I’m not familiar with, hence why I’m asking an LLM for advice}.”

Like, if you know that the results are super dodgy for your own area of expertise, why would you think they’d be any better for, I don’t know, restaurant recommendations in a city you’ve never been to?

Tuesday, November 11th, 2025

DOCTYPE magazine 🚀⌨️

’80s BASIC type-in mags are back, but this time for HTML!

10 wonderful web apps, including games, toys, puzzles and utilities

No coding knowledge needed, you just type

Tuesday, November 4th, 2025

cubic blog: The real problem with AI coding

Can you ship AI-generated code without creating a maintenance nightmare six months from now? Can you debug it when it breaks? Can you modify it when requirements change? Can you onboard new engineers to a codebase they didn’t write and the AI barely explained?

Most teams haven’t realized this shift yet. They’re optimizing for code generation speed while comprehension debt silently accumulates in their repos.

One team I talked to spent 3 days fixing what should have been a 2-hour problem. They had “saved” time by having AI generate the initial implementation. But when it broke, they lost 70 hours trying to understand code they had never built themselves.

That’s comprehension debt compounding. The time you save upfront gets charged back with interest later.

Sunday, October 26th, 2025

Write Code That Runs in the Browser, or Write Code the Browser Runs - Jim Nielsen’s Blog

So instead of asking yourself, “How can I write code that does what I want?” Consider asking yourself, “Can I write code that ties together things the browser already does to accomplish what I want (or close enough to it)?”

Wednesday, October 22nd, 2025

Most of What We Call Progress - Yusuf Aytas

Every engineer eventually overbuilds something. You think you’re being smart. You’re thinking ahead, building for growth and before you know it, you’ve created a system ten times heavier than your actual problem. That’s the trap. We keep designing for imaginary futures for scale that may never come and call it engineering. But it’s not engineering. It’s over-engineering.

The industry rewards it too. Nobody gets promoted for keeping things small and sane. You get promoted for complexity.

Monday, October 13th, 2025

Where’s the AI design renaissance?

I’ve had some incredibly productive moments with AI design tools. But I’ve had at least as many slogs, where I can’t get it to do some basic thing I should’ve done myself 45 minutes ago.

My hunch: vibe coding is a lot like stock-picking – everyone’s always blabbing about their big wins. Ask what their annual rate of return is above the S&P, and it’s a quieter conversation 🤫

This, in my opinion, is how we end up with a firehose of AI hype, and yet zero signs of a software renaissance. As Mike Judge points out, the following graphs are flat: (a) new app store releases, (b) new domain names registered, (c) new Github repositories.

Friday, September 12th, 2025

In the Future All Food Will Be Cooked in a Microwave, and if You Can’t Deal With That Then You Need to Get Out of the Kitchen – Random Thoughts

A microwave isn’t going to take your job; a chef who knows how to use a microwave is going to take your job.

Tuesday, August 5th, 2025

Vibe code is legacy code | Val Town Blog

When you vibe code, you are incurring tech debt as fast as the LLM can spit it out. Which is why vibe coding is perfect for prototypes and throwaway projects: It’s only legacy code if you have to maintain it!

The worst possible situation is to have a non-programmer vibe code a large project that they intend to maintain. This would be the equivalent of giving a credit card to a child without first explaining the concept of debt.

If you don’t understand the code, your only recourse is to ask AI to fix it for you, which is like paying off credit card debt with another credit card.

Saturday, July 19th, 2025

Vibe coding and Robocop

The short version of what I want to say is: vibe coding seems to live very squarely in the land of prototypes and toys. Promoting software that’s been built entirely using this method would be akin to sending a hacked weekend prototype to production and expecting it to be stable.

Remy is taking a very sensible approach here:

I’ve used it myself to solve really bespoke problems where the user count is one.

Would I put this out to production: absolutely not.

Tuesday, June 17th, 2025

The Recurring Cycle of ‘Developer Replacement’ Hype

Here’s what the “AI will replace developers” crowd fundamentally misunderstands: code is not an asset—it’s a liability. Every line must be maintained, debugged, secured, and eventually replaced. The real asset is the business capability that code enables.

If AI makes writing code faster and cheaper, it’s really making it easier to create liability. When you can generate liability at unprecedented speed, the ability to manage and minimize that liability strategically becomes exponentially more valuable.

This is particularly true because AI excels at local optimization but fails at global design. It can optimize individual functions but can’t determine whether a service should exist in the first place, or how it should interact with the broader system. When implementation speed increases dramatically, architectural mistakes get baked in before you realize they’re mistakes.

Tuesday, June 10th, 2025

Scrappy: make little apps for you and your friends

I really like the thinking behind this project:

We believe computers should work for people, and dream of a future where computing, like cooking or word processing, is available to everyone. Where you can solve your own small, unique problems with small, unique apps. Where you don’t just rely on mass-market apps made by expert programmers. Where you share home-made little apps with family and friends.

Scrappy is our contribution to this dream.

Friday, May 30th, 2025

Ensloppification – David Bushell – Web Dev (UK)

Frankly, I’d rather quit my career than live in the future they’re selling. It’s the sheer dystopian drabness of it. Mediocrity as a service.

I tried the tab-completion slot machines; not my cup of tea. I tried image generation and was overcome with literal depression. I don’t want a future as a “prompt artist”.

I’m mostly linking this for what it says, but oh boy, do I love the way it says it with this wonderful HTML web compenent.

Tuesday, May 27th, 2025

Uses

I don’t use large language models. My objection to using them is ethical. I know how the sausage is made.

I wanted to clarify that. I’m not rejecting large language models because they’re useless. They can absolutely be useful. I just don’t think the usefulness outweighs the ethical issues in how they’re trained.

Molly White came to the same conclusion:

The benefits, though extant, seem to pale in comparison to the costs.

Rich has similar thoughts:

What I do know is that I find LLMs useful on occasion, but every time I use one I die a little inside.

I genuinely look forward to being able to use a large language model with a clear conscience. Such a model would need to be trained ethically. When we get a free-range organic large language model I’ll be the first in line to use it. Until then, I’ll abstain. Remember:

You don’t get companies to change their behaviour by rewarding them for it. If you really want better behaviour from the purveyors of generative tools, you should be boycotting the current offerings.

Still, in anticipation of an ethical large language model someday becoming reality, I think it’s good for me to have an understanding of which tasks these tools are good at.

Prototyping seems like a good use case. My general attitude to prototyping is the exact opposite to my attitude to production code; use absolutely any tool you want and prioritise speed over quality.

When it comes to coding in general, I think Laurie is really onto something when he says:

Is what you’re doing taking a large amount of text and asking the LLM to convert it into a smaller amount of text? Then it’s probably going to be great at it. If you’re asking it to convert into a roughly equal amount of text it will be so-so. If you’re asking it to create more text than you gave it, forget about it.

In other words, despite what the hype says, these tools are far better at transforming than they are at generating.

Iris Meredith goes deeper into this distinction between transformative and compositional work:

Compositionality relies (among other things) on two core values or functions: choice and precision, both of which are antithetical to LLM functioning.

My own take on this is that transformative work is often the drudge work—take this data dump and convert it to some other format; take this mock-up and make a disposable prototype. I want my tools to help me with that.

But compositional work that relies on judgement, taste, and choice? Not only would I not use a large language model for that, it’s exactly the kind of work that I don’t want to automate away.

Transformative work is done with broad brushstrokes. Compositional work is done with a scalpel.

Large language models are big messy brushes, not scalpels.

Wednesday, April 30th, 2025

Codewashing

I have little understanding for people using large language models to generate slop; words and images that nobody asked for.

I have more understanding for people using large language models to generate code. Code isn’t the thing in the same way that words or images are; code is the thing that gets you to the thing.

And if a large language model hallucinates some code, you’ll find out soon enough:

With code you get a powerful form of fact checking for free. Run the code, see if it works.

But I want to push back on one justification I see repeatedly about using large language models to write code. Here’s Craig:

There are many moral and ethical issues with using LLMs, but building software feels like one of the few truly ethically “clean”(er) uses (trained on open source code, etc.)

That’s not how this works. Yes, the large language models are trained on lots of code (most of it open source), but they’re not only trained on that. That’s on top of everything else; all the stolen books, all the unpaid creative work of others.

Even Robin Sloan, who first says:

I think the case of code is especially clear, and, for me, basically settled.

…goes on to acknowledge:

But, again, it’s important to say: the code only works because of Everything. Take that data away, train a model using GitHub alone, and you’ll get a far less useful tool.

When large language models are trained on domain-specific data, it’s always in addition to the mahoosive amount of content they’ve already stolen. It’s that mohoosive amount of content—not the domain-specific data—that enables them to parse your instructions.

(Note that I’m being very delibarate in saying “parse”, not “understand.” Though make no mistake, I’m astonished at how good these tools are at parsing instructions. I say that as someone who tried to write natural language parsers for text-only adventure games back in the 1980s.)

So, sure, go ahead and use large language models to write code. But don’t fool yourself into thinking that it’s somehow ethical.

What I said here applies to code too:

If you’re going to use generative tools powered by large language models, don’t pretend you don’t know how your sausage is made.

Saturday, April 26th, 2025

The Hidden Cost of AI Coding – Terrible Software

Feels like an emerging trend:

Instead of that deep immersion where I’d craft each function, I’m now more like a curator? I describe what I want, evaluate what the AI gives me, tweak the prompts, and iterate. It’s efficient, yes. Revolutionary, even. But something essential feels missing — that state of flow where time vanishes and you’re completely absorbed in creation. If this becomes the dominant workflow across teams, do we risk an industry full of highly productive yet strangely detached developers?

Monday, April 7th, 2025

AI ambivalence | Read the Tea Leaves

Here’s the main problem I’ve found with generative AI, and with “vibe coding” in general: it completely sucks out the joy of software development for me.

I hate the way they’ve taken over the software industry, I hate how they make me feel while I’m using them, and I hate the human-intelligence-insulting postulation that a glorified Excel spreadsheet can do what I can but better.

Sunday, March 16th, 2025

Build It Yourself | Armin Ronacher’s Thoughts and Writings

We’re at a point in the most ecosystems where pulling in libraries is not just the default action, it’s seen positively: “Look how modular and composable my code is!” Actually, it might just be a symptom of never wanting to type out more than a few lines.

It always amazes me when people don’t view dependencies as liabilities. To me it feels like the coding equivalent of going to a loan shark. You are asking for technical debt.

There are entire companies who are making a living of supplying you with the tools needed to deal with your dependency mess. In the name of security, we’re pushed to having dependencies and keeping them up to date, despite most of those dependencies being the primary source of security problems.

But there is a simpler path. You write code yourself. Sure, it’s more work up front, but once it’s written, it’s done.

Sunday, March 2nd, 2025

Hallucinations in code are the least dangerous form of LLM mistakes

The moment you run LLM generated code, any hallucinated methods will be instantly obvious: you’ll get an error. You can fix that yourself or you can feed the error back into the LLM and watch it correct itself.

Compare this to hallucinations in regular prose, where you need a critical eye, strong intuitions and well developed fact checking skills to avoid sharing information that’s incorrect and directly harmful to your reputation.

With code you get a powerful form of fact checking for free. Run the code, see if it works.