Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Characterisation of the complete mitochondrial genome of Taraxacum mongolicum revealed five repeat-mediated recombinations

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome.

Abstract

Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afasizhev R (2007) RNA editing. Molecular Biology 41:227–239

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS ONE 6:e16404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrieta-Montiel MP, Shedge V, Davila J, Christensen AC, Mackenzie SA (2009) Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendich AJ (1996) Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol Biol 255:564–588

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi G, Mao Y, Xing Q, Cao M (2018) HomBlocks: A multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics 110:18–22

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng XX, Jiao YN, Hao HF, Xue D, Bai CC, Han SY (2021) Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways. J Ethnopharmacol 274:113978

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Zhao C, Chen F, Liu Y, Zhang S, Wu H, Zhang L, Liu Y (2018) The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination. BMC Genomics 19:614

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn NA, Unni DR, Diesh C, Munoz-Torres M, Harris NL, Yao E, Rasche H, Holmes IH, Elsik CG, Lewis SE (2019) Apollo: Democratizing genome annotation. PLoS Comput Biol 15:e1006790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edera AA, Gandini CL, Sanchez-Puerta MV (2018) Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol 97:215–231

    Article  CAS  PubMed  Google Scholar 

  • Fang B, Li J, Zhao Q, Liang Y, Yu J (2021) Assembly of the Complete Mitochondrial Genome of Chinese Plum (Prunus salicina): Characterization of Genome Recombination and RNA Editing Sites. Genes (Basel) 12:1979

  • González-Castejón M, Visioli F, Rodriguez-Casado A (2012) Diverse biological activities of dandelion. Nutr Rev 70:534–547

    Article  PubMed  Google Scholar 

  • Gualberto JM, Newton KJ (2017) Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. Annu Rev Plant Biol 68:225–252

    Article  CAS  PubMed  Google Scholar 

  • Hao W, Liu G, Wang W, Shen W, Zhao Y, Sun J, Yang Q, Zhang Y, Fan W, Pei S, Chen Z, Xu D, Qin T (2021) RNA Editing and Its Roles in Plant Organelles. Front Genet 12:757109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  • Howad W, Kempken F (1997) Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci U S A 94:11090–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C (2015) Taraxacum mongolicum (Pugongying, Dandelion). In: Liu Y, Wang Z, Zhang J (eds) Dietary Chinese Herbs: Chemistry, Pharmacology and Clinical Evidence. Springer Vienna, Vienna, pp 651–668

    Chapter  Google Scholar 

  • Huber M, Triebwasser-Freese D, Reichelt M, Heiling S, Paetz C, Chandran JN, Bartram S, Schneider B, Gershenzon J, Erb M (2015) Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 115:89–98

    Article  CAS  PubMed  Google Scholar 

  • Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes (Basel) 8:5

  • Jedrejek D, Lis B, Rolnik A, Stochmal A, Olas B (2019) Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem Toxicol 126:233–247

    Article  CAS  PubMed  Google Scholar 

  • Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol 21:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen AC (2019) The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet 15:e1008373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293-w296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Xu Y, Shan Y, Pei X, Yong S, Liu C, Yu J (2021) Assembly of the complete mitochondrial genome of an endemic plant, Scutellaria tsinyunensis, revealed the existence of two conformations generated by a repeat-mediated recombination. Planta 254:36

    Article  CAS  PubMed  Google Scholar 

  • Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF (2016) The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 100:238–256

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Medina R, Goffinet B (2014) 350 my of mitochondrial genome stasis in mosses, an early land plant lineage. Mol Biol Evol 31:2586–2591

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen W, He X (2018) Evaluation of hyperaccumulation potentials to cadmium (Cd) in six ornamental species (compositae). Int J Phytoremediation 20:1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW (2009) Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics 10:590

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie S, He S, Lyznik A (1994) The Elusive Plant Mitochondrion as a Genetic System. Plant Physiol 105:775–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez M, Poirrier P, Chamy R, Prüfer D, Schulze-Gronover C, Jorquera L, Ruiz G (2015) Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol 169:244–262

    Article  CAS  PubMed  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2012) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Morley SA, Ahmad N, Nielsen BL (2019) Plant Organelle Genome Replication. Plants (Basel) 8:358

  • Mower JP, Case AL, Floro ER, Willis JH (2012a) Evidence against Equimolarity of Large Repeat Arrangements and a Predominant Master Circle Structure of the Mitochondrial Genome from a Monkeyflower (Mimulus guttatus) Lineage with Cryptic CMS. Genome Biol Evol 4:670–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Mower JP, Sloan DB, Alverson AJ (2012b) Plant Mitochondrial Genome Diversity: The Genomics Revolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ (eds) Plant Genome Diversity, vol 1. Plant Genomes, their Residents, and their Evolutionary Dynamics. Springer Vienna, Vienna, pp 123–144

    Chapter  Google Scholar 

  • Mulligan RM, Chang KL, Chou CC (2007) Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites. Mol Biol Evol 24:1971–1981

    Article  CAS  PubMed  Google Scholar 

  • Naranpanawa DNU, Chandrasekara C, Bandaranayake PCG, Bandaranayake AU (2020) Raw transcriptomics data to gene specific SSRs: a validated free bioinformatics workflow for biologists. Sci Rep 10:18236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Orellano EG, Carrillo N, Calcaterra NB (1992) Evaluation of the Extent of Homologous Chloroplast DNA Sequences in the Mitochondrial Genome of Cowpea (Vigna unguiculata L.). Plant Physiol 98:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu Y-L, Song K (2000) Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci 97:6960–6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picardi E, Pesole G (2013) REDItools: high-throughput RNA editing detection made easy. Bioinformatics 29:1813–1814

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta 1847:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Saxena KB, Kumar RV, Tikle AN, Saxena MK, Gupta P (2013) ICPH 2671 – the world's first commercial food legume hybrid. Plant Breeding 132:479-485

  • Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res 47:W65-w73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan DB (2013) One ring to rule them all? Genome sequencing provides new insights into the “master circle” model of plant mitochondrial DNA structure. New Phytol 200:978–985

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR (2010) Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 185:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern DB, Palmer JD (1984) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci U S A 81:1946–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M (2018) Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics 19:874

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugiura M (1995) The chloroplast genome. Essays Biochem 30:49–57

    CAS  PubMed  Google Scholar 

  • Swindell SR, Plasterer TN (1997) SEQMAN. In: Swindell SR (ed) Sequence Data Analysis Guidebook. Springer, New York, Totowa, NJ, pp 75–89

    Chapter  Google Scholar 

  • Tang W, Luo C (2018) Molecular and Functional Diversity of RNA Editing in Plant Mitochondria. Mol Biotechnol 60:935–945

    Article  CAS  PubMed  Google Scholar 

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6-w11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasupalli N, Kumar V, Bhattacharya R, Bhat SR (2021) Analysis of mitochondrial recombination in the male sterile Brassica juncea cybrid Og1 and identification of the molecular basis of fertility reversion. Plant Mol Biol 106:109–122

    Article  CAS  PubMed  Google Scholar 

  • Walker JF, Jansen RK, Zanis MJ, Emery NC (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. Am J Bot 102:1751–1752

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Wu Y-W, Shih AC-C, Wu C-S, Wang Y-N, Chaw S-M (2007) Transfer of Chloroplast Genomic DNA to Mitochondrial Genome Occurred At Least 300 MYA. Mol Biol Evol 24:2040–2048

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li D, Yao X, Song Q, Wang Z, Zhang Q, Zhong C, Liu Y, Huang H (2019) Evolution and Diversification of Kiwifruit Mitogenomes through Extensive Whole-Genome Rearrangement and Mosaic Loss of Intergenic Sequences in a Highly Variable Region. Genome Biol Evol 11:1192–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang R, Yun Q, Xu Y, Zhao G, Liu J, Shi S, Chen Z, Jia L (2021) Comprehensive analysis of complete mitochondrial genome of Sapindus mukorossi Gaertn.: an important industrial oil tree species in China. Industrial Crops and Products 174:114210

  • Wang XC, Chen H, Yang D, Liu C (2018) Diversity of mitochondrial plastid DNAs (MTPTs) in seed plants. Mitochondrial DNA A DNA Mapp Seq Anal 29:635–642

    CAS  PubMed  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y-G (2006) Cytoplasmic Male Sterility of Rice with Boro II Cytoplasm Is Caused by a Cytotoxic Peptide and Is Restored by Two Related PPR Motif Genes via Distinct Modes of mRNA Silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Zhou Q, Mathews S (2008) A newly found cadmium accumulator-Taraxacum mongolicum. J Hazard Mater 159:544–547

    Article  CAS  PubMed  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Chen H, Shao J, Zhang H, Wu K, Liu C (2017) Identification of Symmetrical RNA Editing Events in the Mitochondria of Salvia miltiorrhiza by Strand-specific RNA Sequencing. Sci Rep 7:42250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z-Q, Liao X-Z, Zhang X-N, Tembrock LR, Broz A (2022) Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. J Syst Evol 60:160–168

    Article  Google Scholar 

  • Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20:348–355

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1–022), the National Science and Technology Fundamental Resources Investigation Program of China [2018FY100705], the National Natural Science Foundation of China [81872966], the Natural Science Foundation of Shandong Province [ZR2022QH084]. The funders were not involved in the study design, data collection and analysis, decision to publish or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

CL conceived the study; MJ collected samples of T. mongolicum, performed data analysis and validation and drafted the manuscript; YN performed data analysis and reviewed the manuscript critically, JLL performed data analysis. All authors have read and agreed on the contents of the manuscript.

Corresponding author

Correspondence to Chang Liu.

Ethics declarations

Conflict of interest

Authors declared that they have no competing and conflicting interests.

Ethics approval and consent to participate

We collected fresh leaf materials of T. mongolicum for this study and processed the voucher specimens and deposited them in the School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) with the accession numbers TaMo01. The study, including plant samples, complied with relevant institutional, national and international guidelines and legislation. No specific permits were required for plant collection.

Consent for publication

Not applicable.

Availability of data and materials

The mitogenome and plastome sequences supporting the conclusions of this article are available in GenBank (https://www.ncbi.nlm.nih.gov/) with accession numbers: OL854086 and OL875302, respectively. The mitochondrial genome could also be downloaded from the Figshare platform with the public links (https://figshare.com/articles/dataset/Taraxacum_mongolicum_mtochondrial_genome/20015306). The raw data have been submitted to the SRA database (SRR19182971, SRR19182970 and SRR21998749).

Additional information

Communicated by Teodoro Cardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118170 KB)

Supplementary file2 (XLSX 312 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Ni, Y., Li, J. et al. Characterisation of the complete mitochondrial genome of Taraxacum mongolicum revealed five repeat-mediated recombinations. Plant Cell Rep 42, 775–789 (2023). https://doi.org/10.1007/s00299-023-02994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00299-023-02994-y

Keywords