Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Parameterizing the particle size distribution of environmental DNA provides insights into its improved availability from the water

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Previous studies estimated the particle size distribution (PSD) of environmental DNA (eDNA) to infer its persistence state in the water and to determine the size fraction in which eDNA particles are concentrated. These results, however, depend on the combination of filter pore sizes and may not necessarily provide the proper implications for the eDNA state and availability in the water. To address this issue, the present study proposes parameterizing the PSD using the Weibull distribution model, which has been widely used for various materials. Re-analyses of previous datasets show the Weibull parameters (representing the PSD profiles) significantly depend on species traits, marker types, temperature, and time passages after the removal of the individuals. The results allowed for calculating the proportion of eDNA captured using a given filter pore size and the filter pore size required to collect a given percentage of eDNA particles under various study designs and environmental conditions. The results also posed caveats indicating that the strategy for a sufficient eDNA collection method is not always uniform across experimental and environmental conditions. The findings contribute to a better understanding of the eDNA state and improved eDNA availability, refining eDNA-based biodiversity and ecosystem monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the datasets compiled in this study are available in the supplementary files and each original study.

References

  • Andruszkiewicz Allan, E., Zhang, W. G., Lavery, C. A., & Govindarajan, F. A. (2021). Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA, 3(2), 492–514.

    Article  Google Scholar 

  • Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1–17.

    Article  CAS  Google Scholar 

  • Barnes, M. A., Chadderton, W. L., Jerde, C. L., Mahon, A. R., Turner, C. R., & Lodge, D. M. (2021). Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 3(3), 643–653.

    Article  CAS  Google Scholar 

  • Bayat, H., Rastgo, M., Zadeh, M. M., & Vereecken, H. (2015). Particle size distribution models, their characteristics and fitting capability. Journal of Hydrology, 529, 872–889.

    Article  Google Scholar 

  • Brandão‐Dias, P. F., Hallack, D. M., Snyder, E. D., Tank, J. L., Bolster, D., Volponi, S., ... & Egan, S. P. (2023a). Particle size influences decay rates of environmental DNA in aquatic systems. Molecular Ecology Resources, 23(4), 756–770.

  • Brandão-Dias, P. F. P., Tank, J. L., Snyder, E. D., Mahl, U. H., Peters, B., Bolster, D., ... & Egan, S. P. (2023b). Suspended materials affect particle size distribution and removal of environmental DNA in flowing waters. Environmental Science & Technology, 57(35), 13161–13171.

  • Burian, A., Mauvisseau, Q., Bulling, M., Domisch, S., Qian, S., & Sweet, M. (2021). Improving the reliability of eDNA data interpretation. Molecular Ecology Resources, 21(5), 1422–1433.

    Article  CAS  Google Scholar 

  • Burks, R. L., Reynolds, C., Rosas, E., Bashara, C., Dolapchiev, L., Jerde, C. L., & Barnes, M. A. (2024). Snail slime in real time: Challenges in predicting the relationship between environmental DNA and apple snail biomass. Management of Biological Invasions, 15(3), 415–435.

    Article  Google Scholar 

  • Cooper, M. K., Villacorta‐Rath, C., Burrows, D., Jerry, D. R., Carr, L., Barnett, A., ... & Simpfendorfer, C. A. (2022). Practical eDNA sampling methods inferred from particle size distribution and comparison of capture techniques for a critically endangered elasmobranch. Environmental DNA, 4(5), 1011–1023.

  • Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas‐Márquez, J., Michaud, B., Montes, E., ... & Breitbart, M. (2018). Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods, 16(4), 209–221.

  • Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology, 53(3), 722–732.

    Article  Google Scholar 

  • Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology, 50(4), 1859–1867.

    Article  CAS  Google Scholar 

  • Evans, N. T., & Lamberti, G. A. (2018). Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 197, 60–66.

    Article  Google Scholar 

  • Harper, L. R., Handley, L. L., Carpenter, A. I., Ghazali, M., Di Muri, C., Macgregor, C. J., ... & Hänfling, B. (2019). Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biological Conservation, 238, 108225.

  • Hidaka, S., Jo, T. S., Yamamoto, S., Katsuhara, K. R., Tomita, S., Miya, M., ... & Minamoto, T. (2024). Sensitive and efficient surveillance of Japanese giant salamander (Andrias japonicus) distribution in western Japan using multi-copy nuclear DNA marker. Limnology, 25(2), 189–198.

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(3), 346–363.

    Article  Google Scholar 

  • Jo, T. S. (2023). Utilizing the state of environmental DNA (eDNA) to incorporate time-scale information into eDNA analysis. Proceedings of the Royal Society B, 290(1999), 20230979.

    Article  Google Scholar 

  • Jo, T. S. (2023). Methodological considerations for aqueous environmental RNA collection, preservation, and extraction. Analytical Sciences, 39(10), 1711–1718.

    Article  CAS  Google Scholar 

  • Jo, T. S. (2024). Larger particle size distribution of environmental RNA compared to environmental DNA: A case study targeting the mitochondrial cytochrome b gene in zebrafish (Danio rerio) using experimental aquariums. The Science of Nature, 111(2), 18.

    Article  CAS  Google Scholar 

  • Jo, T., & Minamoto, T. (2021). Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses. Molecular Ecology Resources, 21(5), 1490–1503.

    Article  CAS  Google Scholar 

  • Jo, T. S., & Sasaki, Y. (2024). Evaluating the quantitative performance of environmental DNA metabarcoding for freshwater zooplankton community: A case study in Lake Biwa, Japan. Environmental Science and Pollution Research, 31, 58069–58082.

    Article  CAS  Google Scholar 

  • Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019). Particle size distribution of environmental DNA from the nuclei of marine fish. Environmental Science & Technology, 53(16), 9947–9956.

    Article  CAS  Google Scholar 

  • Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020). Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA, 2(2), 140–151.

    Article  Google Scholar 

  • Jo, T., Takao, K., & Minamoto, T. (2022). Linking the state of environmental DNA to its application for biomonitoring and stock assessment: Targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes. Environmental DNA, 4(2), 271–283.

    Article  CAS  Google Scholar 

  • Jo, T. S., Tsuri, K., & Yamanaka, H. (2022). Can nuclear aquatic environmental DNA be a genetic marker for the accurate estimation of species abundance? The Science of Nature, 109(4), 38.

    Article  CAS  Google Scholar 

  • Kumar, G., Farrell, E., Reaume, A. M., Eble, J. A., & Gaither, M. R. (2022). One size does not fit all: Tuning eDNA protocols for high-and low-turbidity water sampling. Environmental DNA, 4(1), 167–180.

    Article  CAS  Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26.

    Article  Google Scholar 

  • Mauvisseau, Q., Harper, L. R., Sander, M., Hanner, R. H., Kleyer, H., & Deiner, K. (2022). The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environmental Science & Technology, 56(9), 5322–5333.

    Article  CAS  Google Scholar 

  • Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S., Yamanaka, H., & Doi, H. (2017). Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Molecular Ecology Resources, 17(2), 324–333.

    Article  CAS  Google Scholar 

  • Minegishi, Y., Wong, M. K. S., Nakao, M., Nishibe, Y., Tachibana, A., Kim, Y. J., & Hyodo, S. (2023). Species-specific patterns in spatio-temporal dynamics of juvenile chum salmon and their zooplankton prey in Otsuchi Bay, Japan, revealed by simultaneous eDNA quantification of diverse taxa from the same water samples. Fisheries Oceanography, 32(3), 311–326.

    Article  Google Scholar 

  • Moushomi, R., Wilgar, G., Carvalho, G., Creer, S., & Seymour, M. (2019). Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Scientific Reports, 9, 12500.

    Article  Google Scholar 

  • Nagler, M., Podmirseg, S. M., Ascher-Jenull, J., Sint, D., & Traugott, M. (2022). Why eDNA fractions need consideration in biomonitoring. Molecular Ecology Resources, 22(7), 2458–2470.

    Article  Google Scholar 

  • Osawa, R., Jo, T. S., Nakamura, R., Futami, K., Itayama, T., Chadeka, E. A., ... & Minamoto, T. (2024). Methodological assessment for efficient collection of Schistosoma mansoni environmental DNA and improved schistosomiasis surveillance in tropical wetlands. Acta Tropica, 107402.

  • Pawlowski, J., Apothéloz-Perret-Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258–4264.

    Article  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team. (2022). nlme: Linear and nonlinear mixed effects models. R package version 3. 1–155. https://CRAN.Rproject.org/package=nlme. Accessed 24 Oct 2024.

  • Pont, D. (2024). Predicting downstream transport distance of fish eDNA in lotic environments. Molecular Ecology Resources, 24(4), e13934.

    Article  CAS  Google Scholar 

  • R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Robson, H. L., Noble, T. H., Saunders, R. J., Robson, S. K., Burrows, D. W., & Jerry, D. R. (2016). Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Molecular Ecology Resources, 16(4), 922–932.

    Article  CAS  Google Scholar 

  • Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., ... & Bolster, D. (2018). Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environmental Science & Technology, 52(15), 8530–8537.

  • Slade, R. W., Moritz, C., Heideman, A., & Hale, P. T. (1993). Rapid assessment of single-copy nuclear DNA variation in diverse species. Molecular Ecology, 2(6), 359–373.

    Article  CAS  Google Scholar 

  • Snyder, E. D., Tank, J. L., Brandão-Dias, P. F., Bibby, K., Shogren, A. J., Bivins, A. W., ... & Lamberti, G. A. (2023). Environmental DNA (eDNA) removal rates in streams differ by particle size under varying substrate and light conditions. Science of the Total Environment, 903, 166469

  • Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28(5), 983–1001.

    Article  Google Scholar 

  • Sugawara, K., Sasaki, Y., Okano, K., Watanabe, M., & Miyata, N. (2022). Application of eDNA for monitoring freshwater bivalve Nodularia nipponensis and its glochidium larvae. Environmental DNA, 4(4), 908–919.

    Article  CAS  Google Scholar 

  • Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Campbell, M. A., Van Der Heyde, M., ... & Allentoft, M. E. (2023). Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Science of the Total Environment, 873, 162322.

  • Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676–684.

    Article  Google Scholar 

  • Verdier, H., Datry, T., Logez, M., Konecny-Duprè, L., Gauthier, M., & Lefébure, T. (2024). Environmental DNA particle size distribution and quantity differ across taxa and organelles. Environmental DNA, 6(5), e598.

    Article  CAS  Google Scholar 

  • Vesilind, P. A. (1980). The Rosin-Rammler particle size distribution. Resource Recovery and Conservation, 5(3), 275–277.

    Article  Google Scholar 

  • Wang, S., Yan, Z., Hänfling, B., Zheng, X., Wang, P., Fan, J., & Li, J. (2021). Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment, 755, 142622.

    Article  CAS  Google Scholar 

  • Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics., 18(3), 293–297.

    Article  Google Scholar 

  • Wilcox, T. M., McKelvey, K. S., Young, M. K., Lowe, W. H., & Schwartz, M. K. (2015). Environmental DNA particle size distribution from brook trout (Salvelinus fontinalis). Conservation Genetics Resources, 7, 639–641.

    Article  Google Scholar 

  • Xiong, W., Huang, X., Chen, Y., Fu, R., Du, X., Chen, X., & Zhan, A. (2020). Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. Environmental Science and Ecotechnology, 1, 100008.

    Article  Google Scholar 

  • Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., ... & Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368.

  • Zaiko, A., von Ammon, U., Stuart, J., Smith, K. F., Yao, R., Welsh, M., ... & Bowers, H. A. (2022). Assessing the performance and efficiency of environmental DNA/RNA capture methodologies under controlled experimental conditions. Methods in Ecology and Evolution, 13(7), 1581–1594

  • Zhao, B., van Bodegom, P. M., & Trimbos, K. (2021). The particle size distribution of environmental DNA varies with species and degradation. Science of the Total Environment, 797, 149175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and an editor who provided constructive advice to improve the manuscript. The proofreading of the manuscript was partly supported by Grammarly (https://app.grammarly.com).

Funding

This work was supported by Grant-in-Aid for JSPS Research Fellows (grant numbers JP22 J00439 and JP22 KJ3043).

Author information

Authors and Affiliations

Authors

Contributions

T.J.S. conceived the study, performed data analyses, and wrote and edited the manuscript.

Corresponding author

Correspondence to Toshiaki S. Jo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, T.S. Parameterizing the particle size distribution of environmental DNA provides insights into its improved availability from the water. Environ Monit Assess 197, 519 (2025). https://doi.org/10.1007/s10661-025-13998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-025-13998-4

Keywords