Abstract
Previous studies estimated the particle size distribution (PSD) of environmental DNA (eDNA) to infer its persistence state in the water and to determine the size fraction in which eDNA particles are concentrated. These results, however, depend on the combination of filter pore sizes and may not necessarily provide the proper implications for the eDNA state and availability in the water. To address this issue, the present study proposes parameterizing the PSD using the Weibull distribution model, which has been widely used for various materials. Re-analyses of previous datasets show the Weibull parameters (representing the PSD profiles) significantly depend on species traits, marker types, temperature, and time passages after the removal of the individuals. The results allowed for calculating the proportion of eDNA captured using a given filter pore size and the filter pore size required to collect a given percentage of eDNA particles under various study designs and environmental conditions. The results also posed caveats indicating that the strategy for a sufficient eDNA collection method is not always uniform across experimental and environmental conditions. The findings contribute to a better understanding of the eDNA state and improved eDNA availability, refining eDNA-based biodiversity and ecosystem monitoring.
Similar content being viewed by others
Data availability
All the datasets compiled in this study are available in the supplementary files and each original study.
References
Andruszkiewicz Allan, E., Zhang, W. G., Lavery, C. A., & Govindarajan, F. A. (2021). Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA, 3(2), 492–514.
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1–17.
Barnes, M. A., Chadderton, W. L., Jerde, C. L., Mahon, A. R., Turner, C. R., & Lodge, D. M. (2021). Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA, 3(3), 643–653.
Bayat, H., Rastgo, M., Zadeh, M. M., & Vereecken, H. (2015). Particle size distribution models, their characteristics and fitting capability. Journal of Hydrology, 529, 872–889.
Brandão‐Dias, P. F., Hallack, D. M., Snyder, E. D., Tank, J. L., Bolster, D., Volponi, S., ... & Egan, S. P. (2023a). Particle size influences decay rates of environmental DNA in aquatic systems. Molecular Ecology Resources, 23(4), 756–770.
Brandão-Dias, P. F. P., Tank, J. L., Snyder, E. D., Mahl, U. H., Peters, B., Bolster, D., ... & Egan, S. P. (2023b). Suspended materials affect particle size distribution and removal of environmental DNA in flowing waters. Environmental Science & Technology, 57(35), 13161–13171.
Burian, A., Mauvisseau, Q., Bulling, M., Domisch, S., Qian, S., & Sweet, M. (2021). Improving the reliability of eDNA data interpretation. Molecular Ecology Resources, 21(5), 1422–1433.
Burks, R. L., Reynolds, C., Rosas, E., Bashara, C., Dolapchiev, L., Jerde, C. L., & Barnes, M. A. (2024). Snail slime in real time: Challenges in predicting the relationship between environmental DNA and apple snail biomass. Management of Biological Invasions, 15(3), 415–435.
Cooper, M. K., Villacorta‐Rath, C., Burrows, D., Jerry, D. R., Carr, L., Barnett, A., ... & Simpfendorfer, C. A. (2022). Practical eDNA sampling methods inferred from particle size distribution and comparison of capture techniques for a critically endangered elasmobranch. Environmental DNA, 4(5), 1011–1023.
Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas‐Márquez, J., Michaud, B., Montes, E., ... & Breitbart, M. (2018). Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods, 16(4), 209–221.
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology, 53(3), 722–732.
Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology, 50(4), 1859–1867.
Evans, N. T., & Lamberti, G. A. (2018). Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research, 197, 60–66.
Harper, L. R., Handley, L. L., Carpenter, A. I., Ghazali, M., Di Muri, C., Macgregor, C. J., ... & Hänfling, B. (2019). Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biological Conservation, 238, 108225.
Hidaka, S., Jo, T. S., Yamamoto, S., Katsuhara, K. R., Tomita, S., Miya, M., ... & Minamoto, T. (2024). Sensitive and efficient surveillance of Japanese giant salamander (Andrias japonicus) distribution in western Japan using multi-copy nuclear DNA marker. Limnology, 25(2), 189–198.
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(3), 346–363.
Jo, T. S. (2023). Utilizing the state of environmental DNA (eDNA) to incorporate time-scale information into eDNA analysis. Proceedings of the Royal Society B, 290(1999), 20230979.
Jo, T. S. (2023). Methodological considerations for aqueous environmental RNA collection, preservation, and extraction. Analytical Sciences, 39(10), 1711–1718.
Jo, T. S. (2024). Larger particle size distribution of environmental RNA compared to environmental DNA: A case study targeting the mitochondrial cytochrome b gene in zebrafish (Danio rerio) using experimental aquariums. The Science of Nature, 111(2), 18.
Jo, T., & Minamoto, T. (2021). Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses. Molecular Ecology Resources, 21(5), 1490–1503.
Jo, T. S., & Sasaki, Y. (2024). Evaluating the quantitative performance of environmental DNA metabarcoding for freshwater zooplankton community: A case study in Lake Biwa, Japan. Environmental Science and Pollution Research, 31, 58069–58082.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019). Particle size distribution of environmental DNA from the nuclei of marine fish. Environmental Science & Technology, 53(16), 9947–9956.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020). Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA, 2(2), 140–151.
Jo, T., Takao, K., & Minamoto, T. (2022). Linking the state of environmental DNA to its application for biomonitoring and stock assessment: Targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes. Environmental DNA, 4(2), 271–283.
Jo, T. S., Tsuri, K., & Yamanaka, H. (2022). Can nuclear aquatic environmental DNA be a genetic marker for the accurate estimation of species abundance? The Science of Nature, 109(4), 38.
Kumar, G., Farrell, E., Reaume, A. M., Eble, J. A., & Gaither, M. R. (2022). One size does not fit all: Tuning eDNA protocols for high-and low-turbidity water sampling. Environmental DNA, 4(1), 167–180.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26.
Mauvisseau, Q., Harper, L. R., Sander, M., Hanner, R. H., Kleyer, H., & Deiner, K. (2022). The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environmental Science & Technology, 56(9), 5322–5333.
Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S., Yamanaka, H., & Doi, H. (2017). Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Molecular Ecology Resources, 17(2), 324–333.
Minegishi, Y., Wong, M. K. S., Nakao, M., Nishibe, Y., Tachibana, A., Kim, Y. J., & Hyodo, S. (2023). Species-specific patterns in spatio-temporal dynamics of juvenile chum salmon and their zooplankton prey in Otsuchi Bay, Japan, revealed by simultaneous eDNA quantification of diverse taxa from the same water samples. Fisheries Oceanography, 32(3), 311–326.
Moushomi, R., Wilgar, G., Carvalho, G., Creer, S., & Seymour, M. (2019). Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Scientific Reports, 9, 12500.
Nagler, M., Podmirseg, S. M., Ascher-Jenull, J., Sint, D., & Traugott, M. (2022). Why eDNA fractions need consideration in biomonitoring. Molecular Ecology Resources, 22(7), 2458–2470.
Osawa, R., Jo, T. S., Nakamura, R., Futami, K., Itayama, T., Chadeka, E. A., ... & Minamoto, T. (2024). Methodological assessment for efficient collection of Schistosoma mansoni environmental DNA and improved schistosomiasis surveillance in tropical wetlands. Acta Tropica, 107402.
Pawlowski, J., Apothéloz-Perret-Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258–4264.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team. (2022). nlme: Linear and nonlinear mixed effects models. R package version 3. 1–155. https://CRAN.Rproject.org/package=nlme. Accessed 24 Oct 2024.
Pont, D. (2024). Predicting downstream transport distance of fish eDNA in lotic environments. Molecular Ecology Resources, 24(4), e13934.
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Robson, H. L., Noble, T. H., Saunders, R. J., Robson, S. K., Burrows, D. W., & Jerry, D. R. (2016). Fine-tuning for the tropics: Application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Molecular Ecology Resources, 16(4), 922–932.
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., ... & Bolster, D. (2018). Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environmental Science & Technology, 52(15), 8530–8537.
Slade, R. W., Moritz, C., Heideman, A., & Hale, P. T. (1993). Rapid assessment of single-copy nuclear DNA variation in diverse species. Molecular Ecology, 2(6), 359–373.
Snyder, E. D., Tank, J. L., Brandão-Dias, P. F., Bibby, K., Shogren, A. J., Bivins, A. W., ... & Lamberti, G. A. (2023). Environmental DNA (eDNA) removal rates in streams differ by particle size under varying substrate and light conditions. Science of the Total Environment, 903, 166469
Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28(5), 983–1001.
Sugawara, K., Sasaki, Y., Okano, K., Watanabe, M., & Miyata, N. (2022). Application of eDNA for monitoring freshwater bivalve Nodularia nipponensis and its glochidium larvae. Environmental DNA, 4(4), 908–919.
Takahashi, M., Saccò, M., Kestel, J. H., Nester, G., Campbell, M. A., Van Der Heyde, M., ... & Allentoft, M. E. (2023). Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Science of the Total Environment, 873, 162322.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676–684.
Verdier, H., Datry, T., Logez, M., Konecny-Duprè, L., Gauthier, M., & Lefébure, T. (2024). Environmental DNA particle size distribution and quantity differ across taxa and organelles. Environmental DNA, 6(5), e598.
Vesilind, P. A. (1980). The Rosin-Rammler particle size distribution. Resource Recovery and Conservation, 5(3), 275–277.
Wang, S., Yan, Z., Hänfling, B., Zheng, X., Wang, P., Fan, J., & Li, J. (2021). Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment, 755, 142622.
Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics., 18(3), 293–297.
Wilcox, T. M., McKelvey, K. S., Young, M. K., Lowe, W. H., & Schwartz, M. K. (2015). Environmental DNA particle size distribution from brook trout (Salvelinus fontinalis). Conservation Genetics Resources, 7, 639–641.
Xiong, W., Huang, X., Chen, Y., Fu, R., Du, X., Chen, X., & Zhan, A. (2020). Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. Environmental Science and Ecotechnology, 1, 100008.
Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., ... & Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368.
Zaiko, A., von Ammon, U., Stuart, J., Smith, K. F., Yao, R., Welsh, M., ... & Bowers, H. A. (2022). Assessing the performance and efficiency of environmental DNA/RNA capture methodologies under controlled experimental conditions. Methods in Ecology and Evolution, 13(7), 1581–1594
Zhao, B., van Bodegom, P. M., & Trimbos, K. (2021). The particle size distribution of environmental DNA varies with species and degradation. Science of the Total Environment, 797, 149175.
Acknowledgements
We thank the anonymous reviewers and an editor who provided constructive advice to improve the manuscript. The proofreading of the manuscript was partly supported by Grammarly (https://app.grammarly.com).
Funding
This work was supported by Grant-in-Aid for JSPS Research Fellows (grant numbers JP22 J00439 and JP22 KJ3043).
Author information
Authors and Affiliations
Contributions
T.J.S. conceived the study, performed data analyses, and wrote and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jo, T.S. Parameterizing the particle size distribution of environmental DNA provides insights into its improved availability from the water. Environ Monit Assess 197, 519 (2025). https://doi.org/10.1007/s10661-025-13998-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-025-13998-4