Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Discovery of novel direct small-molecule inhibitors targeting HIF-2α using structure-based virtual screening, molecular dynamics simulation, and MM-GBSA calculations

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factors (HIFs) are the main regulatory factors implicated in the adaptation of cancer cells to hypoxic stress, which has provoked much interest as an attractive target for the design of promising chemotherapeutic agents. Since indirect HIF inhibitors (HIFIs) lead to the occurrence of various side effects, the need of the hour is to develop direct HIFIs, physically interacting with important functional domains within the HIF protein structure. Accordingly, in the present study, it was attempted to develop an exhaustive structure-based virtual screening (VS) process coupled with molecular docking, molecular dynamic (MD) simulation, and MM-GBSA calculations for the identification of novel direct inhibitors against the HIF-2α subunit. For this purpose, a focused library of over 200,000 compounds from the NCI database was used for VS against the PAS-B domain of the target protein, HIF-2α. This domain was suggested to be a possible ligand-binding site, which is characterized by a large internal hydrophobic cavity, unique to the HIF-2α subunit. The top-ranked compounds, NSC106416, NSC217021, NSC217026, NSC215639, and NSC277811 with the best docking scores were taken up for the subsequent in silico ADME properties and PAINS filtration. The selected drug-like hits were employed for carrying out MD simulation which was followed by MM-GBSA calculations to retrieve the candidates showing the highest in silico binding affinity towards the PAS-B domain of HIF-2α. The analysis of results indicated that all molecules, except the NSC277811, fulfilled necessary drug-likeness properties. Four selected drug-like candidates, NSC106416, NSC217021, NSC217026, and NSC215639 were found to expose the stability profiles within the cavity located inside the PAS-B domain of HIF-2α over simulation time. Finally, the results of the MM-GBSA rescoring method were indicative of the highest binding affinity of NSC217026 for the binding site of the HIF-2α PAS-B domain among selected final hits. Consequently, the hit NSC217026 could serve as a promising scaffold for further optimization toward the design of direct HIF-2α inhibitors for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Relevant data associated with this study are contained within the article or in supplementary material.

Code availability

Not applicable.

References

  1. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239. https://doi.org/10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  2. Graham K, Unger E (2018) Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomed 13:6049. https://doi.org/10.2147/ijn.s140462

    Article  CAS  Google Scholar 

  3. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26(2):281–290. https://doi.org/10.1007/s10555-007-9066-y

    Article  CAS  PubMed  Google Scholar 

  4. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(24):5928–5935. https://doi.org/10.1158/1078-0432.ccr-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akanji MA, Rotimi D, Adeyemi OS (2019) Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid Med Cell Longev 2019:8547846. https://doi.org/10.1155/2019/8547846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, Meng L, Xin Y, Jiang X (2021) Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J Exp Clin Cancer Res 40(1):24. https://doi.org/10.1186/s13046-020-01820-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18(1):157. https://doi.org/10.1186/s12943-019-1089-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. https://doi.org/10.1124/mol.106.027029

    Article  CAS  PubMed  Google Scholar 

  9. Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31(11):2448–2460. https://doi.org/10.1038/emboj.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66(22):3539–3554. https://doi.org/10.1007/s00018-009-0147-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Déry M-AC, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37(3):535–40. https://doi.org/10.1016/j.biocel.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–350. https://doi.org/10.1016/s1471-4914(01)02090-1

    Article  CAS  PubMed  Google Scholar 

  13. Patel SA, Simon MC (2008) Biology of hypoxia-inducible factor-2 α in development and disease. Cell Death Differ 15(4):628–634. https://doi.org/10.1038/cdd.2008.17

    Article  CAS  PubMed  Google Scholar 

  14. Duan C (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 310(4):C260–C269. https://doi.org/10.1152/ajpcell.00315.2015

    Article  PubMed  Google Scholar 

  15. Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27(2):281–298. https://doi.org/10.1016/j.cmet.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  16. Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B (2013) Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem 5(5):553–572. https://doi.org/10.4155/fmc.13.17

    Article  CAS  PubMed  Google Scholar 

  17. Tang W, Zhao G (2020) Small molecules targeting HIF-1α pathway for cancer therapy in recent years. Bioorg Med Chem 28(2):115235. https://doi.org/10.1016/j.bmc.2019.115235

    Article  CAS  PubMed  Google Scholar 

  18. Fallah J, Rini BI (2019) HIF inhibitors: status of current clinical development. Curr Oncol Rep 21(1):6. https://doi.org/10.1007/s11912-019-0752-z

    Article  PubMed  Google Scholar 

  19. Hu C-J, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α. Mol Biol Cell 18(11):4528–4542. https://doi.org/10.1091/mbc.e06-05-0419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brahimi-Horn MC, Pouysségur J (2009) HIF at a glance. J Cell Sci 122(8):1055–1057. https://doi.org/10.1242/jcs.035022

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, You Q, Zhang X (2019) Small-molecule modulators of the hypoxia-inducible factor pathway: development and therapeutic applications. J Med Chem 62(12):5725–5749. https://doi.org/10.1021/acs.jmedchem.8b01596

    Article  CAS  PubMed  Google Scholar 

  22. Scheuermann TH, Li Q, Ma HW, Key J, Zhang L, Chen R, Garcia JA, Naidoo J, Longgood J, Frantz DE, Tambar UK, Gardner KH, Bruick RK (2013) Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat Chem Biol 9(4):271–276. https://doi.org/10.1038/nchembio.1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Key J, Scheuermann TH, Anderson PC, Daggett V, Gardner KH (2009) Principles of ligand binding within a completely buried cavity in HIF2alpha PAS-B. J Am Chem Soc 131(48):17647–17654. https://doi.org/10.1021/ja9073062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheuermann TH, Stroud D, Sleet CE, Bayeh L, Shokri C, Wang H, Caldwell CG, Longgood J, MacMillan JB, Bruick RK, Gardner KH, Tambar UK (2015) Isoform-selective and stereoselective inhibition of hypoxia inducible factor-2. J Med Chem 58(15):5930–5941. https://doi.org/10.1021/acs.jmedchem.5b00529

    Article  CAS  PubMed  Google Scholar 

  25. Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH (2009) Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci USA 106:450–455. https://doi.org/10.1073/pnas.0808092106

    Article  PubMed  PubMed Central  Google Scholar 

  26. Erbel PJ, Card PB, Karakuzu O, Bruick RK, Gardner KH (2003) Structural basis for PAS domain heterodimerization in the basichelix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proc Natl Acad Sci USA 100:15504–15509. https://doi.org/10.1073/pnas.2533374100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wehn PM, Rizzi JP, Dixon DD, Grina JA, Schlachter ST, Wang B, Xu R, Yang H, Du X, Han G, Wang K (2018) Design and activity of specific hypoxia-inducible factor-2α (HIF-2α) inhibitors for the treatment of clear cell renal cell carcinoma: discovery of clinical candidate (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J Med Chem 61(21):9691–9721. https://doi.org/10.1021/acs.jmedchem.8b01196

    Article  CAS  PubMed  Google Scholar 

  28. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W, Carvo I, Signoretti S, Bruick RK, Josey JA, Wallace EM, Kaelin WG (2016) On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature 539:107–111. https://doi.org/10.1038/nature19795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, Cheng T, Czerwinski RM, Dixon DD, Goggin BS, Grina JA, Halfmann MM, Maddie MA, Olive SR, Schlachter ST, Tan H, Wang B, Wang K, Xie S, Xu R, Yang H, Josey JA (2016) A smallmolecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76(18):5491–5500. https://doi.org/10.1158/0008-5472.can-16-0473

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A, Homayoun F, Ma Y, Patel N, Yell P, Hao G, Yousuf Q, Joyce A, Pedrosa I, Geiger H, Zhang H, Chang J, Gardner KH, Bruick RK, Reeves C, Hwang TH, Courtney K, Frenkel E, Sun X, Zojwalla N, Wong T, Rizzi JP, Wallace EM, Josey JA, Xie Y, Xie X-J, Kapur P, McKay RM, Brugarolas J (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–117. https://doi.org/10.1038/nature19796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, Josey JA, Choueiri TK (2018) Phase I dose escalation trial of PT2385, a first-in-class hypoxia inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J Clin Oncol 36:867–874. https://doi.org/10.1200/jco.2017.74.2627

    Article  CAS  PubMed  Google Scholar 

  32. Xu R, Wang K, Rizzi JP, Huang H, Grina JA, Schlachter ST, Wang B, When PM, Yang H, Dixon DD, Czerwinski RM (2019) 3-[(1S,2S,3R)-2,3-difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J Med Chem 62:6876–6893

    Article  CAS  PubMed  Google Scholar 

  33. Schrödinger LLC (2015) Version 3.3, LigPrep. Schrödinger, LLC, New York

    Google Scholar 

  34. Sirous H, Chemi G, Gemma S, Butini S, Debyser Z, Christ F, Saghaie L, Brogi S, Fassihi A, Campiani G, Brindisi M (2019) Identification of novel 3-hydroxypyran-4-one derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach. Front Chem 7:574. https://doi.org/10.3389/fchem.2019.00574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sirous H, Campiani G, Calderone V, Brogi S (2021) Discovery of novel hit compounds as potential HDAC1 inhibitors: the case of ligand-and structure-based virtual screening. Comput Biol Med 137:104808. https://doi.org/10.1016/j.compbiomed.2021.104808

    Article  CAS  PubMed  Google Scholar 

  36. Epik (2015) Epik version 3.4. Schrödinger, LLC, New York

    Google Scholar 

  37. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. https://doi.org/10.1007/s10822-007-9133-z

    Article  CAS  PubMed  Google Scholar 

  38. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760.10.1021/acs.jctc.9b00054

    Article  CAS  Google Scholar 

  39. Bernstein FC, Koetzle TF, Williams GJ, Meyer JF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. https://doi.org/10.1016/S0022-2836(77)80200-3

    Article  PubMed  Google Scholar 

  40. Protein preparation wizard 2015, -1; Epik version 2.4, Schrödinger, LLC, New York, 2015; Impact version 5.9, Schrödinger, LLC, New York, 2015; Prime version 3.2, Schrödinger, LLC, New York, 2015

  41. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  42. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

  43. Desmond Molecular Dynamics System, version 5.6, D. E. Shaw Research, New York, 2018. Maestro-Desmond Interoperability Tools, Schrödinger, New York, 2018

  44. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  45. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  46. Brogi S, Sirous H, Calderone V, Chemi G (2020) Amyloid β fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct 11(9):8122–8132. https://doi.org/10.1039/D0FO01511C

    Article  CAS  PubMed  Google Scholar 

  47. Humphreys DD, Friesner RA, Berne BJ (1994) A multiple-time-step molecular dynamics algorithm for macromolecules. J Phys Chem 98:6885–6892. https://doi.org/10.1021/j100078a035

    Article  CAS  Google Scholar 

  48. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  49. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  50. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LGA (1995) Smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  51. Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP (2006) Physics-based scoring of protein–ligand complexes: enrichment of known inhibitors in large-scale virtual screening. J Chem Inf Model 46:243–253. https://doi.org/10.1021/ci0502855

    Article  CAS  PubMed  Google Scholar 

  52. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791. https://doi.org/10.1021/jm000241h

    Article  CAS  PubMed  Google Scholar 

  53. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719–16729. https://doi.org/10.1039/c4cp01388c

    Article  CAS  PubMed  Google Scholar 

  54. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045. https://doi.org/10.1039/c4cp03179b

    Article  CAS  PubMed  Google Scholar 

  55. Schrödinger. Command-line only scripts. https://www.schrodinger.com/scriptcenter. Accessed 4 Feb 2023

  56. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hosea NA, Jones HM (2013) Predicting pharmacokinetic profles using in silico derived parameters. Mol Pharm 10:1207–1215. https://doi.org/10.1021/mp300482w

    Article  CAS  PubMed  Google Scholar 

  58. Hosea NA, Jones HM (2013) Predicting pharmacokinetic profiles using in silico derived parameters. Mol Pharm 10:1207–1215. https://doi.org/10.1021/mp300482w

    Article  CAS  PubMed  Google Scholar 

  59. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  CAS  Google Scholar 

  60. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717. https://doi.org/10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

  61. Baell JB, Nissink JW (2018) Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol 13(1):36–44. https://doi.org/10.1021/acschembio.7b00903

    Article  CAS  PubMed  Google Scholar 

  62. Hospital A, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37–47. https://doi.org/10.2147/AABC.S70333

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pearlman DA, Charifson PS (2001) Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system. J Med Chem 44:3417–3423. https://doi.org/10.1021/jm0100279

    Article  CAS  PubMed  Google Scholar 

  64. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166. https://doi.org/10.1023/a:1020155510718

    Article  CAS  PubMed  Google Scholar 

  65. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZ, Hou T (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119(16):9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

    Article  CAS  PubMed  Google Scholar 

  66. Wang C, Greene DA, Xiao L, Qi R, Luo R (2018) Recent developments and applications of the MMPBSA method. Front Mol Biosci 4:87. https://doi.org/10.3389/fmolb.2017.00087

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Bioinformatics Research Center in Isfahan University of Medical Sciences, Isfahan, I.R. Iran for financing and supporting this project (Grant No. 299006 to H.S).

Funding

The study was supported by Isfahan University of Medical Sciences (Grant No. 299006).

Author information

Authors and Affiliations

Authors

Contributions

BY and HS designed research. BY, FJE, SB, PACW, and HS compiled and analyzed data. BY, FJE, SB, and HS performed computations. BY, SB, and HS wrote the manuscript. HS supervised the project.

Corresponding authors

Correspondence to Hajar Sirous or Simone Brogi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This is a purely computational study and ethics approvals are not applicable.

Consent to participate

Not applicable.

Consent for publication

All co-authors have read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, B., Sirous, H., Enguita, F.J. et al. Discovery of novel direct small-molecule inhibitors targeting HIF-2α using structure-based virtual screening, molecular dynamics simulation, and MM-GBSA calculations. Mol Divers 28, 1203–1224 (2024). https://doi.org/10.1007/s11030-023-10650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11030-023-10650-6

Keywords