Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Codon usage bias

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Codon usage bias is the preferential or non-random use of synonymous codons, a ubiquitous phenomenon observed in bacteria, plants and animals. Different species have consistent and characteristic codon biases. Codon bias varies not only with species, family or group within kingdom, but also between the genes within an organism. Codon usage bias has evolved through mutation, natural selection, and genetic drift in various organisms. Genome composition, GC content, expression level and length of genes, position and context of codons in the genes, recombination rates, mRNA folding, and tRNA abundance and interactions are some factors influencing codon bias. The factors shaping codon bias may also be involved in evolution of the universal genetic code. Codon-usage bias is critical factor determining gene expression and cellular function by influencing diverse processes such as RNA processing, protein translation and protein folding. Codon usage bias reflects the origin, mutation patterns and evolution of the species or genes. Investigations of codon bias patterns in genomes can reveal phylogenetic relationships between organisms, horizontal gene transfers, molecular evolution of genes and identify selective forces that drive their evolution. Most important application of codon bias analysis is in the design of transgenes, to increase gene expression levels through codon optimization, for development of transgenic crops. The review gives an overview of deviations of genetic code, factors influencing codon usage or bias, codon usage bias of nuclear and organellar genes, computational methods to determine codon usage and the significance as well as applications of codon usage analysis in biological research, with emphasis on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Major factors affecting codon usage bias in organisms such as GC content of genome, population size, gene expression level, protein length, codon position and context, tRNA abundance and interactions and mRNA structure are diagrammatically indicated. tRNA interactions are classified into frequency bias, co-occurence bias and pair bias. E, P and A indicate exit, peptide and amino acid sites in the ribosomes. The tRNA interactions were modified and redrawn from [1]

Similar content being viewed by others

Data Availability

Not Applicable. All data are presented in the manuscript.

Code availability

Not Applicable.

References

  1. Quax TE, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161. https://doi.org/10.1016/j.molcel.2015.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma QP, Li C, Wang J, Wang Y, Ding ZT (2015) Analysis of synonymous codon usage in FAD7 genes from different plant species. Genet Mol Res 14:1414–1422. https://doi.org/10.4238/2015.February.13.20

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y (2020) A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal 18:145. https://doi.org/10.1186/s12964-020-00642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salim HMW, Cavalcanti ARO (2008) Factors influencing codon usage bias in genomes. J Braz Chem Soc 19:2. https://doi.org/10.1590/S0103-50532008000200008

    Article  Google Scholar 

  5. Supek F (2016) The code of silence: Widespread associations between synonymous codon biases and gene function. J Mol Evol 82:65–73. https://doi.org/10.1007/s00239-015-9714-8

    Article  CAS  PubMed  Google Scholar 

  6. Athey J, Alexaki A, Osipova E, Rostovtsev A, Santana-Quintero LV, Katneni U, Simonyan V, Kimchi-Sarfaty C (2017) A new and updated resource for codon usage tables. BMC Bioinformatics 18:391. https://doi.org/10.1186/s12859-017-1793-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ingvarsson PK (2008) Molecular evolution of synonymous codon usage in Populus. BMC Evol Biol 8:307. https://doi.org/10.1186/1471-2148-8-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Q (2012) Mutational bias and translational selection shaping the codon usage pattern of tissue-specific genes in rice. PLoS ONE 7:e48295. https://doi.org/10.1371/journal.pone.0048295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J (2017) Codon usage and codon pair patterns in non-grass monocot genomes. Ann Bot 120:893–909. https://doi.org/10.1093/aob/mcx112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plotkin J, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. https://doi.org/10.1038/nrg2899

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Z, Dang Y, Zhou M, Li L, Yu C-h, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci USA 113:E6117–E6125. https://doi.org/10.1073/pnas.1606724113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y (2018) Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci USA 115:E4940–E4949. https://doi.org/10.1073/pnas.1719375115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kwon K-C, Chan H-T, León IR, Williams-Carrier R, Barkan A, Daniell H (2016) Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol 172:62–77

    Article  CAS  Google Scholar 

  14. Bourret J, Alizon S, Bravo IG (2019) COUSIN (COdon usage similarity INdex): a normalized measure of codon usage preferences. Genome Biol Evol 11:3523–3528. https://doi.org/10.1093/gbe/evz262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232. https://doi.org/10.1038/1921227a0

    Article  CAS  PubMed  Google Scholar 

  16. Nirenberg M (2004) Historical review: deciphering the genetic code—a personal account. Trends Biochem Sci 29:46–54

    Article  CAS  Google Scholar 

  17. Stegmann UE (2016) ‘Genetic Coding’ reconsidered: an analysis of actual usage. Br J Philos Sci 67:707–730. https://doi.org/10.1093/bjps/axv007

    Article  PubMed  Google Scholar 

  18. Ling J, Söll D (2012) The genetic code: yesterday, today, and tomorrow. Resonance 17:1136–1142

    Article  CAS  Google Scholar 

  19. Chatterjee S, Yadav S (2019) The origin of prebiotic information system in the peptide/RNA World: a simulation model of the evolution of translation and the genetic code. Life 9:25. https://doi.org/10.3390/life9010025

    Article  CAS  PubMed Central  Google Scholar 

  20. Saier MH Jr (2019) Understanding the genetic code. J Bacteriol 201:e00091-e119. https://doi.org/10.1128/JB.00091-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamashima K, Kanai A (2013) Alternative genetic code for amino acids and transfer RNA revisited. Biomol Concepts 4:309–318. https://doi.org/10.1515/bmc-2013-0002

    Article  CAS  PubMed  Google Scholar 

  22. Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111. https://doi.org/10.1002/iub.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Žihala D, Eliáš M (2019) Evolution and unprecedented variants of the mitochondrial genetic code in a lineage of green algae. Genome Biol Evol 11:2992–3007. https://doi.org/10.1093/gbe/evz210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M (2016) An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26:2364–2369. https://doi.org/10.1016/j.cub.2016.06.064

    Article  CAS  PubMed  Google Scholar 

  25. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    Article  CAS  Google Scholar 

  26. Hamashima K, Mori M, Andachi Y, Tomita M, Kohara Y, Kanai A (2015) Analysis of genetic code ambiguity arising from nematode-specific misacylated tRNAs. PLoS ONE 10:e0116981. https://doi.org/10.1371/journal.pone.0116981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukai T, Lajoie MJ, Englert M, Söll D (2017) Rewriting the genetic code. Annu Rev Microbiol 71:557–577. https://doi.org/10.1146/annurev-micro-090816-093247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, Eliáš M (2017) Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 15:8. https://doi.org/10.1186/s12915-017-0353-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noutahi E, Calderon V, Blanchette M, El-Mabrouk N, Lang BF (2019) Rapid genetic code evolution in green algal mitochondrial genomes. Mol Biol Evol 36:766–783. https://doi.org/10.1093/molbev/msz016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lobanov AV, Turanov AA, Hatfield DL, Gladyshev VN (2010) Dual functions of codons in the genetic code. Crit Rev Biochem Mol Biol 45:257–265. https://doi.org/10.3109/10409231003786094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan J, O’Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL, Palioura S, Simonović M, Söll D (2010) Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 584:342–349. https://doi.org/10.1016/j.febslet.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Plant J 66:80–93. https://doi.org/10.1111/j.1365-313X.2011.04490.x

    Article  CAS  PubMed  Google Scholar 

  33. Rother M, Krzycki JA (2010) Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic Archaea. Archaea 2010:453642. https://doi.org/10.1155/2010/453642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Piatkov KI, Vu TTM, Hwang C-S, Varshavsky A (2015) Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microb Cell Graz Austria 2:376–393

    Article  CAS  Google Scholar 

  35. Cao X, Slavoff XA (2020) Non-AUG start codons: expanding and regulating the small and alternative ORFeome. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2020.111973

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quast B, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S (2015) Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 589:1703–1712

    Article  CAS  Google Scholar 

  37. Vranova V, Rejsek K, Skene KR, Formanek P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48. https://doi.org/10.1007/s11104-010-0673-y

    Article  CAS  Google Scholar 

  38. Jin X, Park OJ, Hong SH (2019) Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications. Appl Microbiol Biotechnol 103:2947–2958. https://doi.org/10.1007/s00253-019-09690-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV (2016) Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res 44:7007–7078. https://doi.org/10.1093/nar/gkw530

    Article  PubMed  PubMed Central  Google Scholar 

  40. Napthine S, Ling R, Finch LK, Jones JD, Bell S, Brierley I, Firth AE (2017) Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat Commun 8:15582. https://doi.org/10.1038/ncomms15582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Depeiges A, Degroote F, Espagnol MC (2006) Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. Plant Cell Rep 25:55–61. https://doi.org/10.1007/s00299-005-0034-0

    Article  CAS  PubMed  Google Scholar 

  42. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344. https://doi.org/10.1126/science.1217622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388. https://doi.org/10.1038/nature13314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deb B, Uddin A, Chakraborty S (2020) Codon usage pattern and its influencing factors in different genomes of hepadnaviruses. Arch Virol 165:557–570. https://doi.org/10.1007/s00705-020-04533-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Roossinck MJ (2006) Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Mol Biol 61:699–710

    Article  CAS  Google Scholar 

  46. Bailey-Serres J, Fennoy SI (1993) Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons. Nucleic Acids Res 21:5294–5300

    Article  Google Scholar 

  47. Xu C, Dong J, Tong C, Gong X, Wen Q, Zhuge Q (2013) Analysis of synonymous codon usage patterns in seven different Citrus species. Evol Bioinform Online 9:215–228. https://doi.org/10.4137/EBO.S11930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Camiolo S, Melito S, Porceddu A (2015) New insights into the interplay between codon bias determinants in plants. DNA Res 22:461–470. https://doi.org/10.1093/dnares/dsv027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shabalina SA, Spiridonov NA, Kashina A (2013) Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41:2073–2094. https://doi.org/10.1093/nar/gks1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H-C, Hickey DA (2007) Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol. https://doi.org/10.1186/1471-2148-7-S1-S6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chamani Mohasses F, Solouki M, Ghareyazie B, Fahmideh L, Mohsenpour M (2020) Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. PLoS ONE 15:e0237334. https://doi.org/10.1371/journal.pone.0237334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barozai MY, Kakar A, Din M (2012) The relationship between codon usage bias and salt resistant genes in Arabidopsis thaliana and Oryza sativa. Pure Appl Bio 1:48–51. https://doi.org/10.19045/bspab.2012.12005

    Article  Google Scholar 

  53. Sahoo S, Das SS, Rakshit R (2019) Codon usage pattern and predicted gene expression in Arabidopsis thaliana. Gene: X 2:100012. https://doi.org/10.1016/j.gene.2019.100012

    Article  CAS  Google Scholar 

  54. Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–498. https://doi.org/10.1093/nar/17.2.477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmad T, Sablok G, Tatarinova TV, Xu Q, Deng XX, Guo WW (2013) Evaluation of codon biology in citrus and Poncirus trifoliata based on genomic features and frame corrected expressed sequence tags. DNA Res 20:135–150. https://doi.org/10.1093/dnares/dss039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morton BR, Wright SI (2007) Selective constraints on codon usage of nuclear genes from Arabidopsis thaliana. Mol Biol Evol 24:122–129

    Article  CAS  Google Scholar 

  57. Hui S, Jing L, Tao C, Zhi-biao N (2018) Synonymous codon usage pattern in model legume Medicago truncatula. J Integr Agric 17:2074–2081. https://doi.org/10.1016/S2095-3119(18)61961-6

    Article  Google Scholar 

  58. He B, Dong H, Jiang C, Cao F, Tao S, Li-an Xu (2016) Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci Rep 6:35927. https://doi.org/10.1038/srep35927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chiapello H, Lisacek F, Caboche M, Henaut A (1998) Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209:GC1–GC38

    Article  CAS  Google Scholar 

  60. Gonzalez A, Corsini G, Lobos S, Seelenfreund D, Tello M (2020) Metabolic specialization and codon preference of lignocellulolytic genes in the white rot basidiomycete Ceriporiopsis subvermispora. Genes 11:1227. https://doi.org/10.3390/genes11101227

    Article  CAS  PubMed Central  Google Scholar 

  61. Song H, Gao H, Liu J, Tian P, Nan Z (2017) Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci Rep 7:14853. https://doi.org/10.1038/s41598-017-13981-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Powell JR, Moriyama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790

    Article  CAS  Google Scholar 

  63. Komar AA (2016) The Yin and Yang of codon usage. Hum Mol Genet 25(R2):R77–R85. https://doi.org/10.1093/hmg/ddw207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clarke TF, Clark PL (2010) Increased incidence of rare codon clusters at 5’ and 3’ gene termini: implications for function. BMC Genomics 11:118. https://doi.org/10.1186/1471-2164-11-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bentele K, Saffert P, Rauscher R, Ignatova Z, Blüthgen N (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9:675. https://doi.org/10.1038/msb.2013.32

    Article  PubMed  PubMed Central  Google Scholar 

  66. Clarke TF 4th, Clark PL (2008) Rare codons cluster. PLoS ONE 3:e3412. https://doi.org/10.1371/journal.pone.0003412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morton BR, So BG (2000) Codon usage in plastid genes is correlated with context, position within the gene, and amino acid content. J Mol Evol 50:184–193. https://doi.org/10.1007/s002399910020

    Article  CAS  PubMed  Google Scholar 

  68. Yurovsky A, Amin MR, Gardin J, Chen Y, Skiena S, Futcher B (2018) Prokaryotic coding regions have little if any specific depletion of Shine-Dalgarno motifs. PLoS ONE 13:e0202768. https://doi.org/10.1371/journal.pone.0202768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tats A, Tenson T, Remm M (2008) Preferred and avoided codon pairs in three domains of life. BMC Genomics 9:463. https://doi.org/10.1186/1471-2164-9-463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Amicis A, Marchetti S (2000) Intercodon dinucleotides affect codon choice in plant genes. Nuclei Acids Res 230:1025–1054

    Google Scholar 

  71. Feng C, Xu C-j, Wang Y, LiuW-l Yin X-r, Li X, Chen M, Chen K-s (2013) Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA-Seq data. BMC Genomics 14:732. https://doi.org/10.1186/1471-2164-14-732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chu D (2021) Wei L Context-dependent and -independent selection on synonymous mutations revealed by 1,135 genomes of Arabidopsis thaliana. BMC Ecol Evo 21:68. https://doi.org/10.1186/s12862-021-01792-y

    Article  CAS  Google Scholar 

  73. Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, Freitas A, Oliveira JL, Santos MA (2005) Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol 6:R28. https://doi.org/10.1186/gb-2005-6-3-r28

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morton BR (1998) Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J Mol Evol 46:449–459. https://doi.org/10.1007/PL00006325

    Article  CAS  PubMed  Google Scholar 

  75. Porceddu A, Camiolo S (2011) Spatial analyses of mono, di and trinucleotide trends in plant genes. PLoS ONE 6:e22855. https://doi.org/10.1371/journal.pone.0022855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakagawa S, Niimura Y, Gojobori T, Tanaka H, Miura K (2008) Diversity of preferred nucleotide sequences around the translation initiation codon in eukaryote genomes. Nucleic Acids Res 36:861–871

    Article  CAS  Google Scholar 

  77. Sun J, Chen M, Xu J, Luo J (2005) Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. J Mol Evol 61:437–444. https://doi.org/10.1007/s00239-004-0277-3

    Article  CAS  PubMed  Google Scholar 

  78. Belinky F, Babenko VN, Rogozin IB, Koonin EV (2018) Purifying and positive selection in the evolution of stop codons. Sci Rep 8:9260. https://doi.org/10.1038/s41598-018-27570-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290. https://doi.org/10.1016/s0168-9525(00)89076-9

    Article  CAS  PubMed  Google Scholar 

  80. Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19:20–30. https://doi.org/10.1038/nrm.2017.91

    Article  CAS  PubMed  Google Scholar 

  81. Mukhopadhyay P, Basak S, Ghosh TC (2008) Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and Arabidopsis. DNA Res 15:347–356. https://doi.org/10.1093/dnares/dsn023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ernst JF (1988) Codon usage and gene expression. TIBTECH 6:196–199

    Article  CAS  Google Scholar 

  83. Graifer D, Karpova G (2015) Interaction of tRNA with eukaryotic ribosome. Int J Mol Sci 16:7173–7194. https://doi.org/10.3390/ijms16047173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krishnan NM, Seligmann H, Rao BJ (2008) Relationship between mRNA secondary structure and sequence variability in chloroplast genes: possible life history implications. BMC Genomics 9:48. https://doi.org/10.1186/1471-2164-9-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mauger DM, Cabral BJ, Presnyak V, Su SV, Reid DW, Goodman B, Link K, Khatwani N, Reynders J, Moore MJ, McFadyen IJ (2019) mRNA structure regulates protein expression through changes in functional half-life. Proc Natl Acad Sci USA 116:24075–24083. https://doi.org/10.1073/pnas.1908052116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chamary J, Hurst LD (2005) Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol 6:R75. https://doi.org/10.1186/gb-2005-6-9-r75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Whittle C-A, Malik MR, Krochko JE (2007) Gender-specific selection on codon usage in plant genomes. BMC Genomics 8:169. https://doi.org/10.1186/1471-2164-8-169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qiu S, Zeng K, Slotte T, Wright S, Charlesworth D (2011) Reduced efficacy of natural selection on codon usage bias in selfing Arabidopsis and Capsella species. Genome Biol Evol 3:868–880. https://doi.org/10.1093/gbe/evr085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Szövényi P, Ullrich KK, Rensing SA, Lang D, van Gessel N, Stenøien HK, Conti E, Reski R (2017) Selfing in haploid plants and efficacy of selection: codon usage bias in the model moss Physcomitrella patens. Genome Biol Evol 9:1528–1546. https://doi.org/10.1093/gbe/evx098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wong GK, Wang J, Tao L, Tan J, Zhang J, Passey DA, Yu J (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856. https://doi.org/10.1101/gr.189102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki H, Morton BR (2016) Codon adaptation of plastid genes. PLoS ONE 11:e0154306. https://doi.org/10.1371/journal.pone.0154306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, Wang C, Xu Z (2020) Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 8:e8251. https://doi.org/10.7717/peerj.8251

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nie X, Deng P, Feng K, Liu P, Du X, You FM, Weining S (2014) Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol Biol Rep 32:828–840. https://doi.org/10.1007/s11105-013-0691-z

    Article  CAS  Google Scholar 

  94. Bhattacharyya D, Uddin A, Das S, Chakraborty S (2019) Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae: Faboideae). Mitochondrial DNA A DNA Mapp Seq Anal 30:664–673. https://doi.org/10.1080/24701394.2019.1616701.a

    Article  CAS  PubMed  Google Scholar 

  95. Qi Y, Xu W, Xing T, Zhao M, Li N, Yan L, Xia G, Wang M (2015) Synonymous codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity. Evol Bioinform Online 11:65–77. https://doi.org/10.4137/EBO.S22566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tian G, Li G, Liu Y, Liu Q, Wang Y, Xia G, Wang M (2020) Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat. PLoS ONE 15(11):e0242624. https://doi.org/10.1371/journal.pone.0242624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW (2019) Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci USA 116:934–943. https://doi.org/10.1073/pnas.1816822116

    Article  CAS  PubMed  Google Scholar 

  98. Zhou M, Li X (2009) Analysis of synonymous codon usage patterns in different plant mitochondrial genomes. Mol Biol Rep 36:2039–2046. https://doi.org/10.1007/s11033-008-9414-1

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Z, Li J, Cui P, Ding F, Li A, Townsend JP, Yu J (2012) Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinformatics 13:43. https://doi.org/10.1186/1471-2105-13-43

    Article  PubMed  PubMed Central  Google Scholar 

  100. Perrière G, Thioulouse J (2002) Use and misuse of correspondence analysis in codon usage studies. Nucleic Acids Res 30:4548–4555. https://doi.org/10.1093/nar/gkf565

    Article  PubMed  PubMed Central  Google Scholar 

  101. He Z, Gan H, Liang X (2019) Analysis of synonymous codon usage bias in Potato Virus M and its adaption to hosts. Viruses 11:752. https://doi.org/10.3390/v11080752

    Article  CAS  PubMed Central  Google Scholar 

  102. Yu X, Liu J, Li H, Liu B, Zhao B, Ning Z (2021) Comprehensive analysis of synonymous codon usage patterns and influencing factors of porcine epidemic diarrhea virus. Arch Virol 166:157–165. https://doi.org/10.1007/s00705-020-04857-3

    Article  CAS  PubMed  Google Scholar 

  103. Fox JM, Erill I (2010) Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res 17:185–196. https://doi.org/10.1093/dnares/dsq012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deng Y, de Lima HF, Kalfon J, Chu D, von der Haar T (2020) Hidden patterns of codon usage bias across kingdoms. J R Soc Interface 17:20190819. https://doi.org/10.1098/rsif.2019.0819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Angellotti MC, Bhuiyan SB, Chen G, Wan XF (2007) CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Res 35:W132–W136. https://doi.org/10.1093/nar/gkm392

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hilterbrand A, Saelens J, Putonti C (2012) CBDB: the codon bias database. BMC Bioinformatics 13:62. https://doi.org/10.1186/1471-210513-62

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gould N, Hendy O, Papamichail D (2014) Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2:41. https://doi.org/10.3389/fbioe.2014.00041

    Article  PubMed  PubMed Central  Google Scholar 

  108. Webster GR, Teh AY, Ma JK (2017) Synthetic gene design-the rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng 114:492–502. https://doi.org/10.1002/bit.26183

    Article  CAS  PubMed  Google Scholar 

  109. Sen A, Kargar K, Akgü E, Mustafa C, (2020) Pınar Codon optimization: a mathematical programing approach. Bioinformatics 36:4012–4020. https://doi.org/10.1093/bioinformatics/btaa248

    Article  CAS  PubMed  Google Scholar 

  110. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  Google Scholar 

  111. Jadhav MS, Sakthi AR, Balakrishnan N, Sudhakar D, Udayasuriyan V (2020) Study of expression of indigenous Bt cry2AX1 gene in T3 progeny of cotton and its efficacy against Helicoverpa armigera (Hubner). Braz Arch Biol Technol 63:e20180428. https://doi.org/10.1590/1678-4324-2020180428

    Article  CAS  Google Scholar 

  112. Chakraborty M, Sairam Reddy P, Mustafa G, Rajesh G, Laxmi Narasu VM, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res 25:665–678

    Article  CAS  Google Scholar 

  113. Manikandan R, Balakrishnan N, Sudhakar D, Udayasuriyan V (2016) Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis). 3 Biotech 6:10. https://doi.org/10.1007/s13205-015-0315-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H, Werck-Reichhart D (2000) Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch Biochem Biophys 379:161–169

    Article  CAS  Google Scholar 

  115. Cui Z, Johnston WA, Kirill A (2020) Cell-free approach for non-canonical amino acids incorporation into polypeptides. Front Bioeng Biotechnol 8:1031. https://doi.org/10.3389/fbioe.2020.01031

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sujatha Thankeswaran Parvathy thanks Indian Council of Agricultural Research, New Delhi and Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore for the support. The topic was part of the postgraduation (MSc) course work of Sujatha Thankeswaran Parvathy at TNAU, Coimbatore. We immensely thank the esteemed reviewers and editorial board of the journal for the invaluable, critical comments and suggestions which helped us to improve the manuscript.

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

STP has performed the literature search, compilation, drafting, preparation or writing and revision of the manuscript. VU has provided valuable inputs in conceptualizing, correcting and revision of the manuscript. VPB has contributed to fine-tuning of the manuscript.

Corresponding author

Correspondence to Sujatha Thankeswaran Parvathy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathy, S.T., Udayasuriyan, V. & Bhadana, V. Codon usage bias. Mol Biol Rep 49, 539–565 (2022). https://doi.org/10.1007/s11033-021-06749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11033-021-06749-4

Keywords