Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Attenuated Salmonella typhimurium is a potential biotherapeutic antitumor agent because it can colonize tumors and inhibit their growth. The present study aimed to develop a doxycycline (Doxy)-inducible gene switch system in attenuated S. typhimurium and assess its therapeutic efficacy in various tumor-bearing mice models.

Procedures

A Doxy-inducible gene switch system comprising two plasmids was engineered to trigger the expression of cargo genes (Rluc8 and clyA). Attenuated S. typhimurium carrying Rluc8 were injected intravenously into BALB/c mice bearing CT26 tumors, and bioluminescence images were captured at specified intervals post-administration of doxycycline. The tumor-suppressive effects of bacteria carrying clyA were evaluated in BALB/c mice bearing CT26 tumors and in C57BL/6 mice bearing MC38 tumors.

Results

Expression of the fimE gene, induced only in the presence of Doxy, triggered a unidirectional switch of the POXB20 promoter to induce expression of the cargo genes. The switch event was maintained over a long period of bacterial culture. After intravenous injection of transformed Salmonella into mice bearing CT26 tumors, the bacteria transformed with the Doxy-inducible gene switch system for Rluc8 targeted only tumor tissues and expressed the payloads 2 days after Doxy treatment. Notably, bacteria carrying the Doxy-inducible gene switch system for clyA effectively suppressed tumor growth and prolonged survival, even after just one Doxy induction.

Conclusions

These results suggest that attenuated S. typhimurium carrying this novel gene switch system elicited significant therapeutic effects through a single induction triggering and were a potential biotherapeutic agent for tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chau CH, Steeg PS, Figg WD (2019) Antibody–drug conjugates for cancer. Lancet 394:793–804

    Article  CAS  PubMed  Google Scholar 

  2. Zhong L, Li Y, Xiong L et al (2021) Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 6:201

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery 20:101–124

    Article  CAS  PubMed  Google Scholar 

  4. Sgouros G, Bodei L, McDevitt MR, Nedrow JR (2020) Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discovery 19:589–608

    Article  CAS  PubMed  Google Scholar 

  5. Loughlin KR (2020) William B. Coley: his hypothesis, his toxin, and the birth of immunotherapy. Urol Clin 47:413–417

    Article  Google Scholar 

  6. Roberts NJ, Zhang L, Janku F et al (2014) Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med 6:249ra111

    Article  PubMed  PubMed Central  Google Scholar 

  7. Longhi G, Van Sinderen D, Ventura M, Turroni F (2020) Microbiota and cancer: the emerging beneficial role of bifidobacteria in cancer immunotherapy. Front Microbiol 11:575072

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vitiello M, Evangelista M, Di Lascio N et al (2019) Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene 38:3756–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang S-R, Jo EJ, Nguyen VH et al (2020) Imaging of tumor colonization by Escherichia coli using 18 F-FDS PET. Theranostics 10:4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen VH, Kim H-S, Ha J-M, Hong Y, Choy HE, Min J-J (2010) Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Can Res 70:18–23

    Article  CAS  Google Scholar 

  11. Lou X, Chen Z, He Z, Sun M, Sun J (2021) Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nano-Micro Lett 13:1–26

    Article  CAS  Google Scholar 

  12. Zhou S, Gravekamp C, Bermudes D, Liu K (2018) Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer 18:727–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sieow BF-L, Wun KS, Yong WP, Hwang IY, Chang MW (2021) Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer 7:447–464

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen D-H, Chong A, Hong Y, Min J-J (2023) Bioengineering of bacteria for cancer immunotherapy. Nat Commun 14:3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang S-R, Nguyen D-H, Yoo SW, Min J-J (2022) Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 181:114085

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Wang Y, Qin M et al (2018) Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12:5995–6005

    Article  CAS  PubMed  Google Scholar 

  17. Chien T, Harimoto T, Kepecs B et al (2022) Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 6:94–104

    Article  CAS  PubMed  Google Scholar 

  18. Dharanishanthi V, Orgad A, Rotem N et al (2021) Bacterial-induced pH shifts link individual cell physiology to macroscale collective behavior. Proc Natl Acad Sci 118:e2014346118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. George SE, Hrubesch J, Breuing I et al (2019) Oxidative stress drives the selection of quorum sensing mutants in the Staphylococcus aureus population. Proc Natl Acad Sci 116:19145–19154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qin Y, You S-H, Zhang Y, Venu A, Hong Y, Min J-J (2023) Genetic programming by nitric oxide-sensing gene switch system in tumor-targeting bacteria. Biosensors 13:266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leventhal DS, Sokolovska A, Li N et al (2020) Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun 11:2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen D-H, You S-H, Vo A-TN et al (2022) Optimized doxycycline-inducible gene expression system for genetic programming of tumor-targeting bacteria. Mol Imag Biol 24:82–92

    Article  CAS  Google Scholar 

  23. Zheng JH, Nguyen VH, Jiang S-N et al (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 9:eaak9537

    Article  PubMed  Google Scholar 

  24. Cronin CA, Gluba W, Scrable H (2001) The lac operator-repressor system is functional in the mouse. Genes Dev 15:1506–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang S-N, Park S-H, Lee HJ et al (2013) Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 21:1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wüst RC, Houtkooper RH, Auwerx J (2020) Confounding factors from inducible systems for spatiotemporal gene expression regulation. J Cell Biol 219 (7):e202003031

  27. Cubillos-Ruiz A, Guo T, Sokolovska A et al (2021) Engineering living therapeutics with synthetic biology. Nat Rev Drug Discovery 20:941–960

    Article  CAS  PubMed  Google Scholar 

  28. Sedlmayer F, Aubel D, Fussenegger M (2018) Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng 2:399–415

    Article  CAS  PubMed  Google Scholar 

  29. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    Article  CAS  PubMed  Google Scholar 

  30. Lim WA (2010) Designing customized cell signalling circuits. Nat Rev Mol Cell Biol 11:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ham TS, Lee SK, Keasling JD, Arkin AP (2006) A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol Bioeng 94:1–4

    Article  CAS  PubMed  Google Scholar 

  33. Mohaisen MR, McCarthy AJ, Adriaenssens EM, Allison HE (2020) The site-specific recombination system of the Escherichia coli bacteriophage Φ24B. Front Microbiol 11:578056

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yao S, Yuan P, Ouellette B et al (2020) RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat Methods 17:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bonnet J, Subsoontorn P, Endy D (2012) Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Natl Acad Sci 109:8884–8889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwan WR (2011) Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis 1:17

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCusker MP, Turner EC, Dorman CJ (2008) DNA sequence heterogeneity in Fim tyrosine-integrase recombinase-binding elements and functional motif asymmetries determine the directionality of the fim genetic switch in Escherichia coli K-12. Mol Microbiol 67:171–187

    Article  CAS  PubMed  Google Scholar 

  39. Lawrence A-LE, Abuaita BH, Berger RP et al (2021) Salmonella enterica serovar Typhimurium SPI-1 and SPI-2 shape the global transcriptional landscape in a human intestinal organoid model system. MBio 12:e00399-e321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liss V, Swart AL, Kehl A et al (2017) Salmonella enterica remodels the host cell endosomal system for efficient intravacuolar nutrition. Cell Host Microbe 21:390–402

    Article  CAS  PubMed  Google Scholar 

  41. Jennings E, Thurston TL, Holden DW (2017) Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 22:217–231

    Article  CAS  PubMed  Google Scholar 

  42. Yang L, Nielsen AA, Fernandez-Rodriguez J et al (2014) Permanent genetic memory with> 1-byte capacity. Nat Methods 11:1261–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. National Research Council (2011) Guide for the care and use of laboratory animals: eight edition. National Academies Press, Washington, DC. Available from: https://www.ncbi.nlm.nih.gov/books/NBK54050/, https://doi.org/10.17226/12910

  44. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T (2019) Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 25:1057–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harbaugh SV, Goodson MS, Dillon K, Zabarnick S, Kelley-Loughnane N (2017) Riboswitch-based reversible dual color sensor. ACS Synth Biol 6:766–781

    Article  CAS  PubMed  Google Scholar 

  46. Sun B, Zhang S, Zhang D, Yin X, Wang S, Gu Y, Wang Y (2007) Doxycycline influences microcirculation patterns in B16 melanoma. Exp Biol Med 232:1300–1307

    Article  CAS  Google Scholar 

  47. Kosobokova E, Skrypnik K, Kosorukov V (2016) Overview of fusion tags for recombinant proteins. Biochem Mosc 81:187–200

    Article  CAS  Google Scholar 

  48. Hajnsdorf E, Kaberdin VR (2018) RNA polyadenylation and its consequences in prokaryotes. Philos Trans R Soc B: Biol Sci 373:20180166

    Article  Google Scholar 

  49. Frederick MI, Heinemann IU (2021) Regulation of RNA stability at the 3′ end. Biol Chem 402:425–431

    Article  CAS  PubMed  Google Scholar 

  50. Ki M-R, Pack SP (2020) Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 104:2411–2425

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Bio & Medical Technology Development Program of National Research Foundation of Korea (NRF) (No. NRF-2020M3A9G3080282), NRF grants (Nos. 2020R1A5A2031185, 2021M3C1C3097637, 2021C300) funded by Ministry of Science and IT (MSIT), and by the Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN22C0637, RS-2022-00167101). Y.H. was supported by the Bio & Medical Technology Development Program of NRF (No. NRF-2020M3A9G3080330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeongjin Hong or Jung-Joon Min.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, H.TT., Nguyen, DH., You, SH. et al. Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy. Mol Imaging Biol 26, 148–161 (2024). https://doi.org/10.1007/s11307-023-01879-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11307-023-01879-6

Keywords