Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Bulletin of Mathematical Biology
  3. Article

Siphons in Chemical Reaction Networks

  • Original Article
  • Open access
  • Published: 21 January 2010
  • Volume 72, pages 1448–1463, (2010)
  • Cite this article

You have full access to this open access article

Download PDF
Bulletin of Mathematical Biology Aims and scope Submit manuscript
Siphons in Chemical Reaction Networks
Download PDF
  • Anne Shiu1 &
  • Bernd Sturmfels1 
  • 1026 Accesses

  • 37 Citations

  • Explore all metrics

Abstract

Siphons in a chemical reaction system are subsets of the species that have the potential of being absent in a steady state. We present a characterization of minimal siphons in terms of primary decomposition of binomial ideals, we explore the underlying geometry, and we demonstrate the effective computation of siphons using computer algebra software. This leads to a new method for determining whether given initial concentrations allow for various boundary steady states.

Article PDF

Download to read the full article text

Similar content being viewed by others

A Linear Algebra Approach for Detecting Binomiality of Steady State Ideals of Reversible Chemical Reaction Networks

Chapter © 2020

Generic algebraic conditions for the occurrence of switch-like behavior of a chemical kinetic system of the hypoxia pathway

Article 21 December 2023

Critical Parameters for Singular Perturbation Reductions of Chemical Reaction Networks

Article Open access 09 September 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Biochemical Reaction Network
  • Chemical Process Engineering
  • Complex Networks
  • Complex Systems
  • Dynamical Systems
  • Reaction Kinetics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Adleman, L., Gopalkrishnan, M., Huang, M.-D., Moisset, P., Reishus, D., 2008. On the mathematics of the law of mass action. arXiv:0810.1108.

  • Anderson, D., 2008. Global asymptotic stability for a class of nonlinear chemical equations. SIAM J. Appl. Math. 68, 1464–1476.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, D., Shiu, A., 2010. Persistence of deterministic population processes and the global attractor conjecture. SIAM J. Appl. Math. (to appear). arXiv:0903.0901.

  • Angeli, D., Sontag, E., 2006. Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles. Nonlinear Anal. Ser. B: Real World Appl. 9, 128–140.

    Article  MathSciNet  Google Scholar 

  • Angeli, D., De Leenheer, P., Sontag, E., 2007. A Petri net approach to persistence analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia, G., Niculescu, S.-I. (Eds.), Biology and Control Theory: Current Challenges, Lecture Notes in Control and Information Sciences, vol. 357, pp. 181–216. Springer, Berlin.

    Chapter  Google Scholar 

  • Chavez, M., 2003. Observer design for a class of nonlinear systems, with applications to chemical and biological networks. Ph.D. Thesis, Rutgers University.

  • Cordone, R., Ferrarini, L., Piroddi, L., 2005. Enumeration algorithms for minimal siphons in Petri nets based on place constraints. IEEE Trans. Syst. Man Cybern. Part A 35(6), 844–854.

    Article  Google Scholar 

  • Cox, D., Little, J., O’Shea, D., 2007. Ideals, Varieties and Algorithms, 3rd edn., Undergraduate Texts in Mathematics. Springer, New York.

    MATH  Google Scholar 

  • Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B., 2009. Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565.

    Article  MATH  MathSciNet  Google Scholar 

  • Craciun, G., Pantea, C., Rempala, G., 2009. Algebraic methods for inferring biochemical networks: a maximum likelihood approach. Comput. Biol. Chem. 33(5), 361–367.

    Article  Google Scholar 

  • Diaconis, P., Eisenbud, D., Sturmfels, B., 1998. Lattice walks and primary decomposition. In: Sagan, B.E., Stanley, R.P. (Eds.), Mathematical Essays in Honor of Gian-Carlo Rota, pp. 173–193. Birkhäuser, Basel.

    Google Scholar 

  • Dickenstein, A., Matusevich, L., Miller, E., 2010. Combinatorics of binomial primary decomposition. Math. Z. (to appear). arXiv:0803.3846.

  • Eisenbud, D., Sturmfels, B., 1996. Binomial ideals. Duke Math. J. 84, 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Gawrilow, E., Joswig, M., 2000. Polymake: a framework for analyzing convex polytopes. In: Polytopes—Combinatorics and Computation, Oberwolfach, 1997, DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel.

    Google Scholar 

  • Grayson, D., Stillman, M. Macaulay 2, a software system for research in algebraic geometry, www.math.uiuc.edu/Macaulay2/.

  • Kahle, T., 2009. Decompositions of binomial ideals. arXiv:0906.4873.

  • Manrai, A., Gunawardena, J., 2008. The geometry of multisite phosphorylation. Biophys. J. 95, 5533–5543.

    Article  Google Scholar 

  • Miller, E., Sturmfels, B., 2005. Combinatorial Commutative Algebra, Graduate Texts in Mathematics. Springer, New York.

    Google Scholar 

  • Roune, B., 2009. The slice algorithm for irreducible decomposition of monomial ideals. J. Symb. Comput. 44(4), 358–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Siegel, D., MacLean, D., 2004. Global stability of complex balanced mechanisms. J. Math. Biol. 27, 89–110.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Mathematics, University of California, Berkeley, CA, 94720, USA

    Anne Shiu & Bernd Sturmfels

Authors
  1. Anne Shiu
    View author publications

    Search author on:PubMed Google Scholar

  2. Bernd Sturmfels
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Anne Shiu.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Shiu, A., Sturmfels, B. Siphons in Chemical Reaction Networks. Bull. Math. Biol. 72, 1448–1463 (2010). https://doi.org/10.1007/s11538-010-9502-y

Download citation

  • Received: 29 April 2009

  • Accepted: 07 January 2010

  • Published: 21 January 2010

  • Issue date: August 2010

  • DOI: https://doi.org/10.1007/s11538-010-9502-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chemical reaction systems
  • Siphon
  • Steady state
  • Monomial ideal
  • Binomial ideal
  • Primary decomposition
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature