Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Formation of Natural Melanin/TiO2 Nanostructure Hybrids with Enhanced Optical, Thermal and Magnetic Properties as a Soft Material

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The natural Melanin/TiO2 was synthesized by the use of ultrasonication under UV radiation. The influence of natural melanin on the structural, optical and thermal properties of TiO2 nanoparticles was investigated by using Fourier transform infrared spectroscopy, thermogravimetric analysis and UV-Vis spectroscopy. It was observed that incorporating natural melanin on TiO2 nanoparticles (TiO2-Mel) occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure. Magnetic measurement at room temperature showed diamagnetic behavior. Furthermore, thermal results showed that TiO2-Mel is stable even at temperatures up to 400 °C. According to the results obtained by the thermal stability of melanin with titanium dioxide, it can be a good candidate in many applications such as solar cells and optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yang Y, Wudl F. Organic Electronics: From Materials to Devices[M]. New Jersy: Wiley Online Library, 2009

    Google Scholar 

  2. Lewicka ZA, William WY, Oliva BL, et al. Photochemical Behavior of Nanoscale TiO2 and ZnO Sunscreen Ingredients[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 263: 24–33

    Article  CAS  Google Scholar 

  3. Gupta SM, Tripathi M. A Review of TiO2 Nanoparticles[J]. Chinese Science Bulletin, 2011, 56: 1 639–1 657

    Article  CAS  Google Scholar 

  4. Luo C, Ren X, Dai Z, et al. Present Perspectives of Advanced Characterization Techniques in TiO2-based Photocatalysts[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23 265–23 286

    Article  CAS  Google Scholar 

  5. O’regan B, Grätzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  6. Wang H, Liu Y, Li M, et al. Multifunctional TiO2 Nanowires-modified Nanoparticles Bilayer Film for 3D Dye-sensitized Solar Cells[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2010(4): 1 166–1 169

  7. BC Yadav R. Nanaostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as Solid State Humidity Sensor[J]. Advanced Materials Letters, 2012, 3(3): 197–203

    Article  Google Scholar 

  8. Rahimpour A, Jahanshahi M, Rajaeian B, et al. TiO2 Entrapped Nano-composite PVDF/SPES Membranes: Preparation, Characterization, Antifouling and Antibacterial Properties[J]. Desalination, 2011, 278(1–3): 343–353

    Article  CAS  Google Scholar 

  9. Lin H, Rumaiz AK, Schulz M, et al. Photocatalytic Activity of Pulsed Laser Deposited TiO2 Thin Films[J]. Materials Science and Engineering: B, 2008, 151(2): 133–139

    Article  CAS  Google Scholar 

  10. Tang H, Prasad K, Sanjines R, et al. Electrical and Optical Properties of TiO2 Anatase Thin Films[J]. Journal of Applied Physics, 1994, 75(4): 2 042–2 047

    Article  CAS  Google Scholar 

  11. Goossens A, Maloney EL, Schoonman J. Gas-Phase Synthesis of Nanostructured Anatase TiO2[J]. Chemical Vapor Deposition, 1998, 4(3): 109–114

    Article  CAS  Google Scholar 

  12. Yao Y, Li Y, Shao W, et al. Antibacterial Properties of TiO2 Ceramic Pellets Prepared Using Nano TiO2 Powder[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 24: 337–342

    Article  CAS  Google Scholar 

  13. Bach U, Lupo D, Comte P, et al. Solid-state Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-electron Conversion Effi-Ciencies[J]. Nature, 1998, 395(6702): 583–585

    Article  CAS  Google Scholar 

  14. Wypych A, Bobowska I, Tracz M, et al. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods[J]. Journal of Nanomaterials, 2014, 2014: 1–9

    Article  Google Scholar 

  15. Lee S-Y, Park S-J. TiO2 Photocatalyst for Water Treatment Applications[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1 761–1 769

    Article  CAS  Google Scholar 

  16. Dimitrijevic NM, Tepavcevic S, Liu Y, et al. Nanostructured TiO2/Polypyrrole for Visible Light Photocatalysis[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15 540–15 544

    Article  CAS  Google Scholar 

  17. Sanchez C, Julián B, Belleville P, et al. Applications of Hybrid Organic-inorganic Nanocomposites[J]. Journal of Materials Chemistry, 2005, 15(35–36): 3 559–3 592

    Article  CAS  Google Scholar 

  18. Blanksby SJ, Ellison GB. Bond Dissociation Energies of Organic Molecules[J]. Accounts of Chemical Research, 2003, 36(4): 255–263

    Article  CAS  PubMed  Google Scholar 

  19. Emanuela F, Claudia C, Capodilupo AL, et al. Enhanced Photocatalytic Activity of Pure Anatase TiO2 and Pt-TiO2 Nanoparticles Synthesized by Green Microwave Assisted Route[J]. Materials Research, 2015, 18: 473–481

    Article  Google Scholar 

  20. Meredith P, Sarna T. The Physical and Chemical Properties of Eumelanin[J]. Pigment Cell Research, 2006, 19(6): 572–594

    Article  CAS  PubMed  Google Scholar 

  21. Costa T, Younger R, Poe C, et al. Studies on Synthetic and Natural Melanin and Its Affinity for Fe (III) Ion[J]. Bioinorganic Chemistry and Applications, 2012: 2–9

  22. Ball V, Del Frari D, Michel M, et al. Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale[J]. Bio. Nano. Science, 2012, 2: 16–34

    Google Scholar 

  23. Riley PA. Melanin[J]. The International Journal of Biochemistry & Cell Biology, 1997, 29(11): 1 235–1 239

    Article  CAS  Google Scholar 

  24. Madkhali N, Alqahtani HR, Al-Terary S, et al. Control of Optical Absorption and Fluorescence Spectroscopies of Natural Melanin at Different Solution Concentrations[J]. Optical and Quantum Electronics, 2019, 51: 1–13

    Article  CAS  Google Scholar 

  25. Laref A, Madkhali N, Alqahtani H, et al. Electronic Structures and Optical Spectroscopies of 3d-transition Metals-doped Melanin for Spintronic Devices Application[J]. Journal of Magnetism and Magnetic Materials, 2019, 491: 165 513

    Article  CAS  Google Scholar 

  26. Mostert AB, Powell BJ, Pratt FL, et al. Role of Semiconductivity and Ion Transport in the Electrical Conduction of Melanin[J]. Proceedings of the National Academy of Sciences, 2012, 109(23): 8 943–8 947

    Article  CAS  Google Scholar 

  27. Kim DJ, Ju K-Y, Lee J-K. The Synthetic Melanin Nanoparticles Having an Excellent Binding Capacity of Heavy Metal Ions[J]. Bulletin of the Korean Chemical Society, 2012, 33(11): 3 788–3 792

    Article  CAS  Google Scholar 

  28. Vairale P, Waman V, Mayabadi A, et al. Electrochemical Synthesis of Melanin Thin Films: Evolution of Structural and Optical Properties[J]. Int. J. Adv. Res. Phys. Sci., 2014, 1(7): 35–45

    Google Scholar 

  29. Prasanna A, Niranjan R, Kaushik M, et al. Metal Oxide Curcumin Incorporated Polymer Patches for Wound Healing[J]. Applied Surface Science, 2018, 449: 603–609

    Article  Google Scholar 

  30. León A, Reuquen P, Garín C, et al. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-methoxyestradiol[J]. Applied Sciences, 2017, 7(1): 49–59

    Article  Google Scholar 

  31. Pezzella A, Capelli L, Costantini A, et al. Towards the Development of a Novel Bioinspired Functional Material: Synthesis and Characterization of Hybrid TiO2/DHICA-melanin Nanoparticles[J]. Materials Science and Engineering: C, 2013, 33(1): 347–355

    Article  CAS  PubMed  Google Scholar 

  32. Wang L-F, Rhim J-W. Isolation and Characterization of Melanin from Black Garlic and Sepia Ink[J]. Lwt, 2019, 99: 17–23

    Article  CAS  Google Scholar 

  33. Madkhali N, Alqahtani H, Al-Terary S, et al. The Doping Effect of Fe, Cu and Zn Ions on the Structural and Electrochemical Properties and the Thermostability of Natural Melanin Extracted from Nigella Sativa L[J]. Journal of Molecular Liquids, 2019, 285: 436–443

    Article  CAS  Google Scholar 

  34. Mahlambi MM, Mishra AK, Mishra SB, et al. Comparison of Rhodamine B Degradation Under UV Irradiation by Two Phases of Titania Nano-photocatalyst[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(2): 847–855

    Article  CAS  Google Scholar 

  35. Gómez-Marín AM, Sánchez CI. Thermal and Mass Spectroscopic Characterization of a Sulphur-containing Bacterial Melanin from Bacillus Subtilis[J]. Journal of Non-crystalline Solids, 2010, 356(31–32): 1 576–1 580

    Article  Google Scholar 

  36. Pralea I-E, Moldovan R-C, Petrache A-M, et al. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis[J]. International Journal of Molecular Sciences, 2019, 20(16): 3 943–3 963

    Article  CAS  Google Scholar 

  37. Sajjan SS, Anjaneya O, Kulkarni GB, et al. Properties and Functions of Melanin Pigment from Klebsiella sp. GSK[J]. Microbiology and Biotechnology Letters, 2013, 41(1): 60–69

    Article  CAS  Google Scholar 

  38. Xie W, Pakdel E, Liu D, et al. Waste-hair-derived Natural Melanin/TiO2 Hybrids as Highly Efficient and Stable UV-shielding Fillers for Polyurethane Films[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(3): 1 343–1 352

    Article  Google Scholar 

  39. Bouzidi A, Yahia I, Jilani W, et al. Electronic Conduction Mechanism and Optical Spectroscopy of Indigo Carmine as Novel Organic Semi-Conductors[J]. Optical and Quantum Electronics, 2018, 50: 1–15

    Article  CAS  Google Scholar 

  40. Xie W, Pakdel E, Liang Y, et al. Natural Melanin/TiO2 Hybrids for Simultaneous Removal of Dyes and Heavy Metal Ions Under Visible Light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112 292

    Article  CAS  Google Scholar 

  41. Urbach F. The Long-wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids[J]. Physical Review, 1953, 92(5): 1 324–1 331

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saja Algessair.

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (No. RG-21-09- 53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algessair, S., Madkhali, N. Formation of Natural Melanin/TiO2 Nanostructure Hybrids with Enhanced Optical, Thermal and Magnetic Properties as a Soft Material. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 613–620 (2024). https://doi.org/10.1007/s11595-024-2917-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2917-3

Key words

Profiles

  1. Nawal Madkhali