Abstract
The natural Melanin/TiO2 was synthesized by the use of ultrasonication under UV radiation. The influence of natural melanin on the structural, optical and thermal properties of TiO2 nanoparticles was investigated by using Fourier transform infrared spectroscopy, thermogravimetric analysis and UV-Vis spectroscopy. It was observed that incorporating natural melanin on TiO2 nanoparticles (TiO2-Mel) occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure. Magnetic measurement at room temperature showed diamagnetic behavior. Furthermore, thermal results showed that TiO2-Mel is stable even at temperatures up to 400 °C. According to the results obtained by the thermal stability of melanin with titanium dioxide, it can be a good candidate in many applications such as solar cells and optoelectronics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Yang Y, Wudl F. Organic Electronics: From Materials to Devices[M]. New Jersy: Wiley Online Library, 2009
Lewicka ZA, William WY, Oliva BL, et al. Photochemical Behavior of Nanoscale TiO2 and ZnO Sunscreen Ingredients[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 263: 24–33
Gupta SM, Tripathi M. A Review of TiO2 Nanoparticles[J]. Chinese Science Bulletin, 2011, 56: 1 639–1 657
Luo C, Ren X, Dai Z, et al. Present Perspectives of Advanced Characterization Techniques in TiO2-based Photocatalysts[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23 265–23 286
O’regan B, Grätzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature, 1991, 353(6346): 737–740
Wang H, Liu Y, Li M, et al. Multifunctional TiO2 Nanowires-modified Nanoparticles Bilayer Film for 3D Dye-sensitized Solar Cells[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2010(4): 1 166–1 169
BC Yadav R. Nanaostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as Solid State Humidity Sensor[J]. Advanced Materials Letters, 2012, 3(3): 197–203
Rahimpour A, Jahanshahi M, Rajaeian B, et al. TiO2 Entrapped Nano-composite PVDF/SPES Membranes: Preparation, Characterization, Antifouling and Antibacterial Properties[J]. Desalination, 2011, 278(1–3): 343–353
Lin H, Rumaiz AK, Schulz M, et al. Photocatalytic Activity of Pulsed Laser Deposited TiO2 Thin Films[J]. Materials Science and Engineering: B, 2008, 151(2): 133–139
Tang H, Prasad K, Sanjines R, et al. Electrical and Optical Properties of TiO2 Anatase Thin Films[J]. Journal of Applied Physics, 1994, 75(4): 2 042–2 047
Goossens A, Maloney EL, Schoonman J. Gas-Phase Synthesis of Nanostructured Anatase TiO2[J]. Chemical Vapor Deposition, 1998, 4(3): 109–114
Yao Y, Li Y, Shao W, et al. Antibacterial Properties of TiO2 Ceramic Pellets Prepared Using Nano TiO2 Powder[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 24: 337–342
Bach U, Lupo D, Comte P, et al. Solid-state Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-electron Conversion Effi-Ciencies[J]. Nature, 1998, 395(6702): 583–585
Wypych A, Bobowska I, Tracz M, et al. Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods[J]. Journal of Nanomaterials, 2014, 2014: 1–9
Lee S-Y, Park S-J. TiO2 Photocatalyst for Water Treatment Applications[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1 761–1 769
Dimitrijevic NM, Tepavcevic S, Liu Y, et al. Nanostructured TiO2/Polypyrrole for Visible Light Photocatalysis[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15 540–15 544
Sanchez C, Julián B, Belleville P, et al. Applications of Hybrid Organic-inorganic Nanocomposites[J]. Journal of Materials Chemistry, 2005, 15(35–36): 3 559–3 592
Blanksby SJ, Ellison GB. Bond Dissociation Energies of Organic Molecules[J]. Accounts of Chemical Research, 2003, 36(4): 255–263
Emanuela F, Claudia C, Capodilupo AL, et al. Enhanced Photocatalytic Activity of Pure Anatase TiO2 and Pt-TiO2 Nanoparticles Synthesized by Green Microwave Assisted Route[J]. Materials Research, 2015, 18: 473–481
Meredith P, Sarna T. The Physical and Chemical Properties of Eumelanin[J]. Pigment Cell Research, 2006, 19(6): 572–594
Costa T, Younger R, Poe C, et al. Studies on Synthetic and Natural Melanin and Its Affinity for Fe (III) Ion[J]. Bioinorganic Chemistry and Applications, 2012: 2–9
Ball V, Del Frari D, Michel M, et al. Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale[J]. Bio. Nano. Science, 2012, 2: 16–34
Riley PA. Melanin[J]. The International Journal of Biochemistry & Cell Biology, 1997, 29(11): 1 235–1 239
Madkhali N, Alqahtani HR, Al-Terary S, et al. Control of Optical Absorption and Fluorescence Spectroscopies of Natural Melanin at Different Solution Concentrations[J]. Optical and Quantum Electronics, 2019, 51: 1–13
Laref A, Madkhali N, Alqahtani H, et al. Electronic Structures and Optical Spectroscopies of 3d-transition Metals-doped Melanin for Spintronic Devices Application[J]. Journal of Magnetism and Magnetic Materials, 2019, 491: 165 513
Mostert AB, Powell BJ, Pratt FL, et al. Role of Semiconductivity and Ion Transport in the Electrical Conduction of Melanin[J]. Proceedings of the National Academy of Sciences, 2012, 109(23): 8 943–8 947
Kim DJ, Ju K-Y, Lee J-K. The Synthetic Melanin Nanoparticles Having an Excellent Binding Capacity of Heavy Metal Ions[J]. Bulletin of the Korean Chemical Society, 2012, 33(11): 3 788–3 792
Vairale P, Waman V, Mayabadi A, et al. Electrochemical Synthesis of Melanin Thin Films: Evolution of Structural and Optical Properties[J]. Int. J. Adv. Res. Phys. Sci., 2014, 1(7): 35–45
Prasanna A, Niranjan R, Kaushik M, et al. Metal Oxide Curcumin Incorporated Polymer Patches for Wound Healing[J]. Applied Surface Science, 2018, 449: 603–609
León A, Reuquen P, Garín C, et al. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-methoxyestradiol[J]. Applied Sciences, 2017, 7(1): 49–59
Pezzella A, Capelli L, Costantini A, et al. Towards the Development of a Novel Bioinspired Functional Material: Synthesis and Characterization of Hybrid TiO2/DHICA-melanin Nanoparticles[J]. Materials Science and Engineering: C, 2013, 33(1): 347–355
Wang L-F, Rhim J-W. Isolation and Characterization of Melanin from Black Garlic and Sepia Ink[J]. Lwt, 2019, 99: 17–23
Madkhali N, Alqahtani H, Al-Terary S, et al. The Doping Effect of Fe, Cu and Zn Ions on the Structural and Electrochemical Properties and the Thermostability of Natural Melanin Extracted from Nigella Sativa L[J]. Journal of Molecular Liquids, 2019, 285: 436–443
Mahlambi MM, Mishra AK, Mishra SB, et al. Comparison of Rhodamine B Degradation Under UV Irradiation by Two Phases of Titania Nano-photocatalyst[J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(2): 847–855
Gómez-Marín AM, Sánchez CI. Thermal and Mass Spectroscopic Characterization of a Sulphur-containing Bacterial Melanin from Bacillus Subtilis[J]. Journal of Non-crystalline Solids, 2010, 356(31–32): 1 576–1 580
Pralea I-E, Moldovan R-C, Petrache A-M, et al. From Extraction to Advanced Analytical Methods: The Challenges of Melanin Analysis[J]. International Journal of Molecular Sciences, 2019, 20(16): 3 943–3 963
Sajjan SS, Anjaneya O, Kulkarni GB, et al. Properties and Functions of Melanin Pigment from Klebsiella sp. GSK[J]. Microbiology and Biotechnology Letters, 2013, 41(1): 60–69
Xie W, Pakdel E, Liu D, et al. Waste-hair-derived Natural Melanin/TiO2 Hybrids as Highly Efficient and Stable UV-shielding Fillers for Polyurethane Films[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(3): 1 343–1 352
Bouzidi A, Yahia I, Jilani W, et al. Electronic Conduction Mechanism and Optical Spectroscopy of Indigo Carmine as Novel Organic Semi-Conductors[J]. Optical and Quantum Electronics, 2018, 50: 1–15
Xie W, Pakdel E, Liang Y, et al. Natural Melanin/TiO2 Hybrids for Simultaneous Removal of Dyes and Heavy Metal Ions Under Visible Light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112 292
Urbach F. The Long-wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids[J]. Physical Review, 1953, 92(5): 1 324–1 331
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All authors declare that there are no competing interests.
Additional information
Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (No. RG-21-09- 53)
Rights and permissions
About this article
Cite this article
Algessair, S., Madkhali, N. Formation of Natural Melanin/TiO2 Nanostructure Hybrids with Enhanced Optical, Thermal and Magnetic Properties as a Soft Material. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 613–620 (2024). https://doi.org/10.1007/s11595-024-2917-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11595-024-2917-3