Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The new and evolving paradigms of psychiatric disorders pathogenesis are deeply inclined toward chronic inflammation that leads to disturbances in the neuronal networks of patients. A strong association has been established between the inflammation and neurobiology of depression which is mediated by different toll-like receptors (TLRs). TLRs and associated signalling pathways are identified as key immune regulators to stress and infections in neurobiology. They are a special class of transmembrane proteins, which are one of the broadly studied members of the Pattern Recognition Patterns family. This review focuses on summarizing the important findings on the role of TLRs associated with psychotic disorders and acquired epilepsy. This review also shows the promising potential of TLRs in immune response mediated through antidepressant therapies and TLRs polymorphism associated with various psychotic disorders. Moreover, this also sheds light on future directions to further target TLRs as a therapeutic approach for psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

PRRs:

Pattern recognition receptors

CNS:

Central nervous system

TLRs:

Toll-like receptors

MDD:

Major depressive disorder

MSD:

Moderate-severe depression

PIP:

Post-ictal psychosis

HSP:

Heat shock protein

NF-kβ:

Nuclear factor-kappaβ

PBMC:

Peripheral blood mononuclear cells

IL:

Interleukin

TNF-α:

Tumor necrosis factor- α

MTLE:

Mesial temporal lobe epilepsy

HMGB1:

High-mobility group box-1

SNP:

Single-nucleotide polymorphism

References

  1. Griswold KS, Del Regno PA, Berger RC (2015) Recognition and differential diagnosis of psychosis in primary care. Am Fam Physician 91(12):856–863

    PubMed  Google Scholar 

  2. WHO (2022) mental disorders. https://www.who.int/news-room/fact-sheets/detail/mental-disorders. Accessed 28 Jul 2023

  3. Moitra M, Santomauro D, Collins PY, Vos T, Whiteford H, Saxena S, Ferrari AJ (2022) The global gap in treatment coverage for major depressive disorder in 84 countries from 2000-2019: a systematic review and Bayesian meta-regression analysis. PLoS Med 19(2):e1003901. https://doi.org/10.1371/journal.pmed.1003901

    Article  PubMed  PubMed Central  Google Scholar 

  4. Administration SAaMHS (2020) Key substance use and mental health indicators in the United States: results from the 2019 National Survey on Drug Use and Health (Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration)

  5. National Survey on Drug Use and Health: American Indians and Alaska natives (AI/ANs). (2019) SAMHSA (Substance Abuse and Mental Health Services Administration). https://www.samhsa.gov/data/sites/default/files/reports/rpt31098/2019NSDUH-AIAN/AIAN%202019%20NSDUH.pdf. Accessed 29 Jul 2023

  6. Goel P, Singh G, Bansal V, Sharma S, Kumar P, Chaudhry R, Bansal N, Chaudhary A, Sharma S, Sander JW (2022) Psychiatric comorbidities among people with epilepsy: a population-based assessment in disadvantaged communities. Epilepsy Behav 137(Pt A):108965. https://doi.org/10.1016/j.yebeh.2022.108965

    Article  PubMed  Google Scholar 

  7. Maguire M (2019) The psychopharmacology of epilepsy. Handb Clin Neurol 165:207–227. https://doi.org/10.1016/B978-0-444-64012-3.00012-5

    Article  PubMed  Google Scholar 

  8. Hashimoto C, Hudson KL, Anderson KV (1988) The toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52(2):269–279. https://doi.org/10.1016/0092-8674(88)90516-8

    Article  CAS  PubMed  Google Scholar 

  9. Gay NJ, Keith FJ (1991) Drosophila toll and IL-1 receptor. Nature 351(6325):355–356. https://doi.org/10.1038/351355b0

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6(1):291. https://doi.org/10.1038/s41392-021-00687-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanisch UK, Johnson TV, Kipnis J (2008) Toll-like receptors: roles in neuroprotection? Trends Neurosci 31(4):176–182. https://doi.org/10.1016/j.tins.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  13. McKernan DP, Dennison U, Gaszner G, Cryan JF, Dinan TG (2011) Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl Psychiatry 1(8):e36. https://doi.org/10.1038/tp.2011.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owens T (2009) Toll-like receptors in neurodegeneration. Curr Top Microbiol Immunol 336:105–120. https://doi.org/10.1007/978-3-642-00549-7_6

    Article  CAS  PubMed  Google Scholar 

  15. Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, Cheng A, Mughal MR, Wan R, Ashery U, Mattson MP (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 107(35):15625–15630. https://doi.org/10.1073/pnas.1005807107

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Galecki P, Talarowska M (2018) Inflammatory theory of depression. Psychiatr Pol 52(3):437–447. https://doi.org/10.12740/PP/76863

    Article  PubMed  Google Scholar 

  17. Kim YK, Won E (2017) The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 329:6–11. https://doi.org/10.1016/j.bbr.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Acioglu C, Heary RF, Elkabes S (2021) Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 91:740–755. https://doi.org/10.1016/j.bbi.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Prasad A, Prasad KN, Gupta RK, Pradhan S (2009) Increased expression of ICAM-1 among symptomatic neurocysticercosis. J Neuroimmunol 206(1-2):118–120. https://doi.org/10.1016/j.jneuroim.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  20. Lindahl H, Bryceson YT (2021) Neuroinflammation associated with inborn errors of immunity. Front Immunol 12:827815. https://doi.org/10.3389/fimmu.2021.827815

    Article  CAS  PubMed  Google Scholar 

  21. Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15(1):43–53. https://doi.org/10.1038/nrn3617

    Article  CAS  PubMed  Google Scholar 

  22. Kawai T, Akira S (2007) Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 13(11):460–469. https://doi.org/10.1016/j.molmed.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  23. Temkin NR, Davis GR (1984) Stress as a risk factor for seizures among adults with epilepsy. Epilepsia 25(4):450–456. https://doi.org/10.1111/j.1528-1157.1984.tb03442.x

    Article  CAS  PubMed  Google Scholar 

  24. Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR (2014) The consequences of refractory epilepsy and its treatment. Epilepsy Behav 37:59–70. https://doi.org/10.1016/j.yebeh.2014.05.031

    Article  PubMed  Google Scholar 

  25. Hermann BP, Seidenberg M, Bell B (2000) Psychiatric comorbidity in chronic epilepsy: identification, consequences, and treatment of major depression. Epilepsia 41(Suppl 2):S31–S41. https://doi.org/10.1111/j.1528-1157.2000.tb01522.x

    Article  PubMed  Google Scholar 

  26. Thapar A, Kerr M, Harold G (2009) Stress, anxiety, depression, and epilepsy: investigating the relationship between psychological factors and seizures. Epilepsy Behav 14(1):134–140. https://doi.org/10.1016/j.yebeh.2008.09.004

    Article  PubMed  Google Scholar 

  27. Qin P, Xu H, Laursen TM, Vestergaard M, Mortensen PB (2005) Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy: population based cohort study. BMJ 331(7507):23. https://doi.org/10.1136/bmj.38488.462037.8F

    Article  PubMed  PubMed Central  Google Scholar 

  28. Clancy MJ, Clarke MC, Connor DJ, Cannon M, Cotter DR (2014) The prevalence of psychosis in epilepsy; a systematic review and meta-analysis. BMC Psychiatry 14:75. https://doi.org/10.1186/1471-244X-14-75

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eisenschenk S, Krop H, Devinsky O (2014) Homicide during postictal psychosis. Epilepsy Behav Case Rep 2:118–120. https://doi.org/10.1016/j.ebcr.2014.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rizvi S, Farooq F, Shagufta S, Khan AM, Masood Y, Saeed H (2018) Postictal mania versus postictal psychosis. Cureus 10(9):e3338. https://doi.org/10.7759/cureus.3338

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stover J, Patel M, Carter K, Patel K (2021) Suspected post-ictal psychosis in temporal lobe epilepsy secondary to human herpesvirus 6 encephalitis. Cureus 13(10):e18535. https://doi.org/10.7759/cureus.18535

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270. https://doi.org/10.1016/S2215-0366(14)00122-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kozlowska E, Agier J, Wysokinski A, Lucka A, Sobierajska K, Brzezinska-Blaszczyk E (2019) The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res 272:540–550. https://doi.org/10.1016/j.psychres.2018.12.138

    Article  CAS  PubMed  Google Scholar 

  34. Kang WS, Park JK, Lee SM, Kim SK, Park HJ, Kim JW (2013) Association between genetic polymorphisms of toll-like receptor 2 (TLR2) and schizophrenia in the Korean population. Gene 526(2):182–186. https://doi.org/10.1016/j.gene.2013.04.058

    Article  CAS  PubMed  Google Scholar 

  35. Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164(7):3471–3475. https://doi.org/10.4049/jimmunol.164.7.3471

    Article  CAS  PubMed  Google Scholar 

  36. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3(7):667–672. https://doi.org/10.1038/ni809

    Article  CAS  PubMed  Google Scholar 

  37. Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI (2002) Human toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3(4):354–359. https://doi.org/10.1038/ni777

    Article  CAS  PubMed  Google Scholar 

  38. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. https://doi.org/10.1038/nature07830

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Garcia-Bueno B, Gasso P, MacDowell KS, Callado LF, Mas S, Bernardo M, Lafuente A, Meana JJ, Leza JC (2016) Evidence of activation of the toll-like receptor-4 proinflammatory pathway in patients with schizophrenia. J Psychiatry Neurosci 41(3):E46–E55. https://doi.org/10.1503/jpn.150195

    Article  PubMed  PubMed Central  Google Scholar 

  40. Muller N, Wagner JK, Krause D, Weidinger E, Wildenauer A, Obermeier M, Dehning S, Gruber R, Schwarz MJ (2012) Impaired monocyte activation in schizophrenia. Psychiatry Res 198(3):341–346. https://doi.org/10.1016/j.psychres.2011.12.049

    Article  CAS  PubMed  Google Scholar 

  41. Dickerson F, Stallings C, Origoni A, Schroeder J, Katsafanas E, Schweinfurth L, Savage C, Khushalani S, Yolken R (2016) Inflammatory markers in recent onset psychosis and chronic schizophrenia. Schizophr Bull 42(1):134–141. https://doi.org/10.1093/schbul/sbv108

    Article  PubMed  Google Scholar 

  42. Balaji R, Subbanna M, Shivakumar V, Abdul F, Venkatasubramanian G, Debnath M (2020) Pattern of expression of toll like receptor (TLR)-3 and -4 genes in drug-naive and antipsychotic treated patients diagnosed with schizophrenia. Psychiatry Res 285:112727. https://doi.org/10.1016/j.psychres.2019.112727

    Article  CAS  PubMed  Google Scholar 

  43. Keri S, Szabo C, Kelemen O (2017) Uniting the neurodevelopmental and immunological hypotheses: neuregulin 1 receptor ErbB and toll-like receptor activation in first-episode schizophrenia. Sci Rep 7(1):4147. https://doi.org/10.1038/s41598-017-03736-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Hung YY, Kang HY, Huang KW, Huang TL (2014) Association between toll-like receptors expression and major depressive disorder. Psychiatry Res 220(1-2):283–286. https://doi.org/10.1016/j.psychres.2014.07.074

    Article  CAS  PubMed  Google Scholar 

  45. Hung YY, Huang KW, Kang HY, Huang GY, Huang TL (2016) Antidepressants normalize elevated toll-like receptor profile in major depressive disorder. Psychopharmacology (Berl) 233(9):1707–1714. https://doi.org/10.1007/s00213-015-4087-7

    Article  CAS  PubMed  Google Scholar 

  46. Wu MK, Huang TL, Huang KW, Huang YL, Hung YY (2015) Association between toll-like receptor 4 expression and symptoms of major depressive disorder. Neuropsychiatr Dis Treat 11:1853–1857. https://doi.org/10.2147/NDT.S88430

    Article  PubMed  PubMed Central  Google Scholar 

  47. Merendino RA, Di Rosa AE, Di Pasquale G, Minciullo PL, Mangraviti C, Costantino A, Ruello A, Gangemi S (2002) Interleukin-18 and CD30 serum levels in patients with moderate-severe depression. Mediators Inflamm 11(4):265–267. https://doi.org/10.1080/096293502900000131

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tanaka KF, Shintani F, Fujii Y, Yagi G, Asai M (2000) Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res 96(1):75–80. https://doi.org/10.1016/s0165-1781(00)00196-7

    Article  CAS  PubMed  Google Scholar 

  49. Pandey GN, Rizavi HS, Ren X, Bhaumik R, Dwivedi Y (2014) Toll-like receptors in the depressed and suicide brain. J Psychiatr Res 53:62–68. https://doi.org/10.1016/j.jpsychires.2014.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alshammari TK, Alghamdi H, Green TA, Niazy A, Alkahdar L, Alrasheed N, Alhosaini K, Alswayyed M, Elango R, Laezza F, Alshammari MA, Yacoub H (2019) Assessing the role of toll-like receptor in isolated, standard and enriched housing conditions. PLoS One 14(10):e0222818. https://doi.org/10.1371/journal.pone.0222818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garate I, Garcia-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, Mico JA, Leza JC (2011) Origin and consequences of brain toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 8:151. https://doi.org/10.1186/1742-2094-8-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nie X, Kitaoka S, Tanaka K, Segi-Nishida E, Imoto Y, Ogawa A, Nakano F, Tomohiro A, Nakayama K, Taniguchi M, Mimori-Kiyosue Y, Kakizuka A, Narumiya S, Furuyashiki T (2018) The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron 99(3):464–479 e467. https://doi.org/10.1016/j.neuron.2018.06.035

    Article  CAS  PubMed  Google Scholar 

  53. Weber MD, Frank MG, Sobesky JL, Watkins LR, Maier SF (2013) Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain Behav Immun 32:112–121. https://doi.org/10.1016/j.bbi.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  54. Chourbaji S, Urani A, Inta I, Sanchis-Segura C, Brandwein C, Zink M, Schwaninger M, Gass P (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23(3):587–594. https://doi.org/10.1016/j.nbd.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  55. van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA (2011) Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol 32(3):110–116. https://doi.org/10.1016/j.it.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  56. Barnett KC, Xie Y, Asakura T, Song D, Liang K, Taft-Benz SA, Guo H, Yang S, Okuda K, Gilmore RC, Loome JF, Oguin Iii TH, Sempowski GD, Randell SH, Heise MT, Lei YL, Boucher RC, Ting JP (2023) An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 31(2):243–259 e246. https://doi.org/10.1016/j.chom.2022.12.005

    Article  CAS  PubMed  Google Scholar 

  57. Chao YY, Puhach A, Frieser D, Arunkumar M, Lehner L, Seeholzer T, Garcia-Lopez A, van der Wal M, Fibi-Smetana S, Dietschmann A, Sommermann T, Cikovic T, Taher L, Gresnigt MS, Vastert SJ, van Wijk F, Panagiotou G, Krappmann D, Gross O, Zielinski CE (2023) Human T(H)17 cells engage gasdermin E pores to release IL-1alpha on NLRP3 inflammasome activation. Nat Immunol 24(2):295–308. https://doi.org/10.1038/s41590-022-01386-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Momeni M, Ghorban K, Dadmanesh M, Khodadadi H, Bidaki R, Kazemi Arababadi M, Kennedy D (2016) ASC provides a potential link between depression and inflammatory disorders: a clinical study of depressed Iranian medical students. Nord J Psychiatry 70(4):280–284. https://doi.org/10.3109/08039488.2015.1100328

    Article  PubMed  Google Scholar 

  59. Fleshner M, Frank M, Maier SF (2017) Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology 42(1):36–45. https://doi.org/10.1038/npp.2016.125

    Article  CAS  PubMed  Google Scholar 

  60. Park SJ, Lee JY, Kim SJ, Choi SY, Yune TY, Ryu JH (2015) Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep 5:8502. https://doi.org/10.1038/srep08502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hajebrahimi B, Bagheri M, Hassanshahi G, Nazari M, Bidaki R, Khodadadi H, Arababadi MK, Kennedy D (2014) The adapter proteins of TLRs, TRIF and MYD88, are upregulated in depressed individuals. Int J Psychiatry Clin Pract 18(1):41–44. https://doi.org/10.3109/13651501.2013.859708

    Article  CAS  PubMed  Google Scholar 

  62. Xiang Y, Yan H, Zhou J, Zhang Q, Hanley G, Caudle Y, LeSage G, Zhang X, Yin D (2015) The role of toll-like receptor 9 in chronic stress-induced apoptosis in macrophage. PLoS One 10(4):e0123447. https://doi.org/10.1371/journal.pone.0123447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tauber SC, Ebert S, Weishaupt JH, Reich A, Nau R, Gerber J (2009) Stimulation of toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory. J Neuropathol Exp Neurol 68(10):1116–1124. https://doi.org/10.1097/NEN.0b013e3181b7fde5

    Article  CAS  PubMed  Google Scholar 

  64. Dahl J, Ormstad H, Aass HC, Malt UF, Bendz LT, Sandvik L, Brundin L, Andreassen OA (2014) The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 45:77–86. https://doi.org/10.1016/j.psyneuen.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt FM, Lichtblau N, Minkwitz J, Chittka T, Thormann J, Kirkby KC, Sander C, Mergl R, Fasshauer M, Stumvoll M, Holdt LM, Teupser D, Hegerl U, Himmerich H (2014) Cytokine levels in depressed and non-depressed subjects, and masking effects of obesity. J Psychiatr Res 55:29–34. https://doi.org/10.1016/j.jpsychires.2014.04.021

    Article  PubMed  Google Scholar 

  66. Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Di Mauro P, Cocuzza S, Vitaliti G (2015) Epilepsy and innate immune system: a possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 11(8):2021–2029. https://doi.org/10.1080/21645515.2015.1034921

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132(Pt 9):2478–2486. https://doi.org/10.1093/brain/awp177

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, Fluiter K, Spliet WG, van Rijen PC, Vezzani A, Aronica E (2011) Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 134(Pt 4):1015–1032. https://doi.org/10.1093/brain/awr032

    Article  PubMed  Google Scholar 

  69. Yuan S, Liu Z, Xu Z, Liu J, Zhang J (2020) High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 13(1):91. https://doi.org/10.1186/s13045-020-00920-3

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419. https://doi.org/10.1038/nm.2127

    Article  CAS  PubMed  Google Scholar 

  71. Kleen JK, Holmes GL (2010) Taming TLR4 may ease seizures. Nat Med 16(4):369–370. https://doi.org/10.1038/nm0410-369

    Article  CAS  PubMed  Google Scholar 

  72. Aronica E, Bauer S, Bozzi Y, Caleo M, Dingledine R, Gorter JA, Henshall DC, Kaufer D, Koh S, Loscher W, Louboutin JP, Mishto M, Norwood BA, Palma E, Poulter MO, Terrone G, Vezzani A, Kaminski RM (2017) Neuroinflammatory targets and treatments for epilepsy validated in experimental models. Epilepsia 58(Suppl 3):27–38. https://doi.org/10.1111/epi.13783

    Article  PubMed  PubMed Central  Google Scholar 

  73. Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C, Ferrari M, Zucchetti M, Molteni M, Rossetti C, Brambilla R, Steve White H, D'Incalci M, Aronica E, Vezzani A (2017) Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis 99:12–23. https://doi.org/10.1016/j.nbd.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  74. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T (2011) IL-1 receptor/toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 25(7):1281–1289. https://doi.org/10.1016/j.bbi.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  75. Bartfai T, Sanchez-Alavez M, Andell-Jonsson S, Schultzberg M, Vezzani A, Danielsson E, Conti B (2007) Interleukin-1 system in CNS stress: seizures, fever, and neurotrauma. Ann N Y Acad Sci 1113:173–177. https://doi.org/10.1196/annals.1391.022

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Abdelsalam M, Abd Elmagid DS, Magdy H, El-Sabbagh AM, Mostafa M (2020) The association between toll-like receptor 4 (TLR4) genotyping and the risk of epilepsy in children. Egyptian J Med Human Genet 21(1). https://doi.org/10.1186/s43042-020-00102-3

  77. Gross A, Benninger F, Madar R, Illouz T, Griffioen K, Steiner I, Offen D, Okun E (2017) Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia 58(4):586–596. https://doi.org/10.1111/epi.13688

    Article  CAS  PubMed  Google Scholar 

  78. Galic MA, Riazi K, Henderson AK, Tsutsui S, Pittman QJ (2009) Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 36(2):343–351. https://doi.org/10.1016/j.nbd.2009.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. https://doi.org/10.1038/nature10992

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Matsuda T, Murao N, Katano Y, Juliandi B, Kohyama J, Akira S, Kawai T, Nakashima K (2015) TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nat Commun 6:6514. https://doi.org/10.1038/ncomms7514

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442. https://doi.org/10.1038/74697

    Article  CAS  PubMed  Google Scholar 

  82. Calderwood SK, Theriault J, Gray PJ, Gong J (2007) Cell surface receptors for molecular chaperones. Methods 43(3):199–206. https://doi.org/10.1016/j.ymeth.2007.06.008

    Article  CAS  PubMed  Google Scholar 

  83. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277(17):15107–15112. https://doi.org/10.1074/jbc.M111204200

    Article  CAS  PubMed  Google Scholar 

  84. MacDowell KS, Caso JR, Martin-Hernandez D, Madrigal JL, Leza JC, Garcia-Bueno B (2014) Paliperidone prevents brain toll-like receptor 4 pathway activation and neuroinflammation in rat models of acute and chronic restraint stress. Int J Neuropsychopharmacol 18:(3). https://doi.org/10.1093/ijnp/pyu070

    Article  CAS  Google Scholar 

  85. Bates PR, Hawkins A, Mahadik SP, McGrath JJ (1996) Heat stress lipids and schizophrenia. Prostaglandins Leukot Essent Fatty Acids 55(1-2):101–107. https://doi.org/10.1016/s0952-3278(96)90153-2

    Article  CAS  PubMed  Google Scholar 

  86. Kim JJ, Mandelli L, Lim S, Lim HK, Kwon OJ, Pae CU, Serretti A, Nimgaonkar VL, Paik IH, Jun TY (2008) Association analysis of heat shock protein 70 gene polymorphisms in schizophrenia. Eur Arch Psychiatry Clin Neurosci 258(4):239–244. https://doi.org/10.1007/s00406-007-0791-6

    Article  PubMed  Google Scholar 

  87. Kirkpatrick B, Miller BJ (2013) Inflammation and schizophrenia. Schizophr Bull 39(6):1174–1179. https://doi.org/10.1093/schbul/sbt141

    Article  PubMed  PubMed Central  Google Scholar 

  88. von Ruden EL, Wolf F, Keck M, Gualtieri F, Nowakowska M, Oglesbee M, Potschka H (2018) Genetic modulation of HSPA1A accelerates kindling progression and exerts pro-convulsant effects. Neuroscience 386:108–120. https://doi.org/10.1016/j.neuroscience.2018.06.031

    Article  CAS  Google Scholar 

  89. Kandratavicius L, Hallak JE, Carlotti CG Jr, Assirati JA Jr, Leite JP (2014) Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia 55(11):1834–1843. https://doi.org/10.1111/epi.12787

    Article  CAS  PubMed  Google Scholar 

  90. Rejdak K, Kuhle J, Ruegg S, Lindberg RL, Petzold A, Sulejczak D, Papuc E, Rejdak R, Stelmasiak Z, Grieb P (2012) Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 53(5):922–927. https://doi.org/10.1111/j.1528-1167.2012.03459.x

    Article  CAS  PubMed  Google Scholar 

  91. Hu F, Zhou J, Lu Y, Guan L, Wei NN, Tang YQ, Wang K (2019) Inhibition of Hsp70 suppresses neuronal hyperexcitability and attenuates epilepsy by enhancing A-type potassium current. Cell Rep 26(1):168–181e164. https://doi.org/10.1016/j.celrep.2018.12.032

    Article  CAS  PubMed  Google Scholar 

  92. Pae CU, Drago A, Kim JJ, Mandelli L, De Ronchi D, Serretti A (2009) The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology 59(3):135–141. https://doi.org/10.1159/000218075

    Article  CAS  PubMed  Google Scholar 

  93. Kim JJ, Lee SJ, Toh KY, Lee CU, Lee C, Paik IH (2001) Identification of antibodies to heat shock proteins 90 kDa and 70 kDa in patients with schizophrenia. Schizophr Res 52(1-2):127–135. https://doi.org/10.1016/s0920-9964(00)00091-8

    Article  CAS  PubMed  Google Scholar 

  94. Kenis G, Maes M (2002) Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol 5(4):401–412. https://doi.org/10.1017/S1461145702003164

    Article  CAS  PubMed  Google Scholar 

  95. Roumestan C, Michel A, Bichon F, Portet K, Detoc M, Henriquet C, Jaffuel D, Mathieu M (2007) Anti-inflammatory properties of desipramine and fluoxetine. Respir Res 8(1):35. https://doi.org/10.1186/1465-9921-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Campbell SJ, Jiang Y, Davis AE, Farrands R, Holbrook J, Leppert D, Anthony DC (2007) Immunomodulatory effects of etanercept in a model of brain injury act through attenuation of the acute-phase response. J Neurochem 103(6):2245–2255. https://doi.org/10.1111/j.1471-4159.2007.04928.x

    Article  CAS  PubMed  Google Scholar 

  97. Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Baune BT (2015) Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacology 40(2):502–512. https://doi.org/10.1038/npp.2014.199

    Article  CAS  PubMed  Google Scholar 

  98. Keri S, Szabo C, Kelemen O (2017) Antipsychotics influence toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav Immun 62:256–264. https://doi.org/10.1016/j.bbi.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  99. Juncal-Ruiz M, Riesco-Davila L, Vazquez-Bourgon J, Ortiz-Garcia de la Foz V, Mayoral-Van Son J, Ayesa-Arriola R, Setien-Suero E, Leza JC, Lopez-Hoyos M, Crespo-Facorro B (2020) Expression and functionality study of 9 toll-like receptors in 33 drug-naive non-affective first episode psychosis individuals: a 3-month study. Int J Mol Sci 21(17). https://doi.org/10.3390/ijms21176106

  100. Fillman SG, Cloonan N, Miller LC, Weickert CS (2013) Markers of inflammation in the prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2):133. https://doi.org/10.1038/mp.2012.199

    Article  CAS  PubMed  Google Scholar 

  101. Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N (2022) Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals (Basel) 15(4). https://doi.org/10.3390/ph15040408

  102. Bargi R, Hosseini M, Asgharzadeh F, Khazaei M, Shafei MN, Beheshti F (2021) Protection against blood-brain barrier permeability as a possible mechanism for protective effects of thymoquinone against sickness behaviors induced by lipopolysaccharide in rats. Jundishapur J Nat Pharma Prod 16(2). https://doi.org/10.5812/jjnpp.67765

  103. Jakaria M, Cho DY, Ezazul Haque M, Karthivashan G, Kim IS, Ganesan P, Choi DK (2018) Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders. Oxid Med Cell Longev 2018:1209801. https://doi.org/10.1155/2018/1209801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amin B, Taheri MM, Hosseinzadeh H (2014) Effects of intraperitoneal thymoquinone on chronic neuropathic pain in rats. Planta Med 80(15):1269–1277. https://doi.org/10.1055/s-0034-1383062

    Article  CAS  PubMed  Google Scholar 

  105. Mekhemar M, Tolle J, Hassan Y, Dorfer C, El-Sayed KF (2022) Thymoquinone-mediated modulation of toll-like receptors and pluripotency factors in gingival mesenchymal stem/progenitor cells. Cells 11(9). https://doi.org/10.3390/cells11091452

  106. Naheed M, Green B (2001) Focus on clozapine. Curr Med Res Opin 17(3):223–229. https://doi.org/10.1185/0300799039117069

    Article  CAS  PubMed  Google Scholar 

  107. Jeon S, Kim SH, Shin SY, Lee YH (2018) Clozapine reduces toll-like receptor 4/NF-kappaB-mediated inflammatory responses through inhibition of calcium/calmodulin-dependent Akt activation in microglia. Prog Neuropsychopharmacol Biol Psychiatry 81:477–487. https://doi.org/10.1016/j.pnpbp.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  108. Liu X, De Haan S (2009) Chlorpromazine dose for people with schizophrenia. Cochrane Database Syst Rev 2:CD007778. https://doi.org/10.1002/14651858.CD007778

    Article  Google Scholar 

  109. Gandhi A, Guo T, Shah P, Moorthy B, Ghose R (2013) Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice. Toxicol Appl Pharmacol 266(3):430–438. https://doi.org/10.1016/j.taap.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  110. Lee MS, Kim YH, Park WS, Ahn WG, Park OK, Kwon SH, Morita K, Shim I, Her S (2013) Novel antidepressant-like activity of propolis extract mediated by enhanced glucocorticoid receptor function in the hippocampus. Evid Based Complement Alternat Med 2013:217853. https://doi.org/10.1155/2013/217853

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sforcin JM (2016) Biological properties and therapeutic applications of propolis. Phytother Res 30(6):894–905. https://doi.org/10.1002/ptr.5605

    Article  PubMed  Google Scholar 

  112. Bachiega TF, Orsatti CL, Pagliarone AC, Sforcin JM (2012) The effects of propolis and its isolated compounds on cytokine production by murine macrophages. Phytother Res 26(9):1308–1313. https://doi.org/10.1002/ptr.3731

    Article  CAS  PubMed  Google Scholar 

  113. Orsatti CL, Sforcin JM (2012) Propolis immunomodulatory activity on TLR-2 and TLR-4 expression by chronically stressed mice. Nat Prod Res 26(5):446–453. https://doi.org/10.1080/14786419.2010.482049

    Article  CAS  PubMed  Google Scholar 

  114. Collins FS, Guyer MS, Charkravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278(5343):1580–1581. https://doi.org/10.1126/science.278.5343.1580

    Article  CAS  PubMed  ADS  Google Scholar 

  115. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22(3):231–238. https://doi.org/10.1038/10290

    Article  CAS  PubMed  Google Scholar 

  116. Freudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, Nothen MM (2003) Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Res 13(10):2271–2276. https://doi.org/10.1101/gr.1299703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, Mier D, Schmitgen MM, Rietschel M, Witt SH, Nothen MM, Cichon S, Meyer-Lindenberg A (2011) Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry 16(4):462–470. https://doi.org/10.1038/mp.2010.18

    Article  CAS  PubMed  Google Scholar 

  118. Bothos E, Ntoumou E, Kelaidoni K, Roukas D, Drakoulis N, Papasavva M, Karakostis FA, Moulos P, Karakostis K (2021) Clinical pharmacogenomics in action: design, assessment and implementation of a novel pharmacogenetic panel supporting drug selection for diseases of the central nervous system (CNS). J Transl Med 19(1):151. https://doi.org/10.1186/s12967-021-02816-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie X, Wu X, Su L, Cai M, Li Y, Huang H, Xu L (2021) Application of single nucleotide polymorphism microarray in prenatal diagnosis of fetuses with central nervous system abnormalities. Int J Gen Med 14:4239–4246. https://doi.org/10.2147/IJGM.S323899

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kastrati G, Rosen J, Fredrikson M, Chen X, Kuja-Halkola R, Larsson H, Jensen KB, Ahs F (2022) Genetic influences on central and peripheral nervous system activity during fear conditioning. Transl Psychiatry 12(1):95. https://doi.org/10.1038/s41398-022-01861-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 8(5):546–557. https://doi.org/10.1038/sj.mp.4001268

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Yang J, Han D, Zhao X, Ma J, Ban B, Zhu X, Yang Y, Cao D, Qiu X (2018) Dvl3 polymorphism interacts with life events and pro-inflammatory cytokines to influence major depressive disorder susceptibility. Sci Rep 8(1):14181. https://doi.org/10.1038/s41598-018-31530-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Zou Y, Grigorian A, Kennedy KG, Zai CC, Shao S, Kennedy JL, Andreazza AC, Ameis SH, Heyn C, Maclntosh BJ, Goldstein BI (2022) Differential association of antioxidative defense genes with white matter integrity in youth bipolar disorder. Transl Psychiatry 12(1):504. https://doi.org/10.1038/s41398-022-02261-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oliveira J, Busson M, Etain B, Jamain S, Hamdani N, Boukouaci W, Amokrane K, Bennabi M, Le Guen E, Dargel AA, Houenou J, Ivanova R, Bellivier F, Henry C, Kahn JP, Charron D, Krishnamoorthy R, Vervoitte L, Leboyer M, Tamouza R (2014) Polymorphism of toll-like receptor 4 gene in bipolar disorder. J Affect Disord 152-154:395–402. https://doi.org/10.1016/j.jad.2013.09.043

    Article  CAS  PubMed  Google Scholar 

  125. Aflouk Y, Inoubli O, Saoud H, Zaafrane F, Gaha L, Bel Hadj Jrad B (2021) Association between TLR2 polymorphisms (- 196-174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population. Immunol Res 69(6):541–552. https://doi.org/10.1007/s12026-021-09238-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anubha Chaudhary is supported by UGC, New Delhi for her Junior Research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AC, AM, and AP conceptualized the idea. AC, PM, AKK, SSR, AM, and AP wrote the manuscript. AP critically edited and finalized the manuscript. All the authors read and consented for the publication of final manuscript.

Corresponding author

Correspondence to Amit Prasad.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, A., Mehra, P., Keshri, A.K. et al. The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy. Mol Neurobiol 61, 1527–1542 (2024). https://doi.org/10.1007/s12035-023-03639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12035-023-03639-7

Keywords

Profiles

  1. Amit Prasad