Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Therapeutic options to contain seizures, a transitional stage of many neuropathologies, are limited due to the blood–brain barrier (BBB). Herbal nanoparticle formulations can be employed to enhance seizure prognosis. Bacoside A (BM3) and bacopaside I (BM4) were isolated from Bacopa monnieri and synthesized as nanoparticles (BM3NP and BM4NP, respectively) for an effective delivery system to alleviate seizures and associated conditions. After physicochemical characterization, cell viability was assessed on mouse neuronal stem cells (mNSC) and neuroblastoma cells (N2a). Thereafter, anti-seizure effects, mitochondrial membrane potential (MMP), apoptosis, immunostaining and epileptic marker mRNA expression were determined in vitro. The seizure-induced changes in the cortical electroencephalogram (EEG), electromyography (EMG), Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep were monitored in vivo in a kainic acid (KA)-induced rat seizure model. The sizes of BM3NPs and BM4NPs were 165.5 nm and 689.6 nm, respectively. They were biocompatible and also aided in neuroplasticity in mNSC. BM3NPs and BM4NPs depicted more than 50% cell viability in N2a cells, with IC50 values of 1609 and 2962 µg/mL, respectively. Similarly, these nanoparticles reduced the cytotoxicity of N2a cells upon KA treatment. Nanoparticles decreased the expression of epileptic markers like fractalkine, HMGB1, FOXO3a and pro-inflammatory cytokines (P < 0.05). They protected neurons from apoptosis and restored MMP. After administration of BM3NPs and BM4NPs, KA-treated rats attained a significant reduction in the epileptic spikes, sleep latency and an increase in NREM sleep duration. Results indicate the potential of BM3NPs and BM4NPs in neutralizing the KA-induced excitotoxic seizures in neurons.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analysis during the current study are available from the corresponding author on reasonable request.

Abbreviations

BM3:

Bacoside A

BM4:

Bacopaside I

BM3NP:

Bacoside A nanoparticle

BM4NP:

Bacopaside I nanoparticle

DLS:

Dynamic Light Scattering

EEG:

Electroencephalogram

EMG:

Electromyography

FTIR:

Fourier-Transform Infrared Spectroscopy

HPTLC:

High Performance Thin Layer Chromatography

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NREM:

Non-Rapid Eye Movement

REM:

Rapid Eye Movement

S-W:

Sleep-wakefulness

References

  1. Kandula P, Harden C (2009) Epilepsy. Encycl Neurosci 1147–1149. https://doi.org/10.1016/B978-008045046-9.00586-6

  2. Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 55:475–482. https://doi.org/10.1111/epi.12550

    Article  PubMed  Google Scholar 

  3. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393:689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  4. Ravizza T, Terrone G, Salamone A et al (2017) High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun 72:14–21. https://doi.org/10.1016/j.bbi.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Sah H, Thoma LA, Desu HR et al (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 8:747–765. https://doi.org/10.2147/IJN.S40579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sekhar VC, Viswanathan G, Baby S (2019) Insights into the molecular aspects of neuroprotective bacoside A and bacopaside I. Curr Neuropharmacol 17:438–446. https://doi.org/10.2174/1570159x16666180419123022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas RB, Joy S, Ajayan MS, Paulose CS (2013) Neuroprotective potential of Bacopa monnieri and bacoside a against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell Mol Neurobiol 33:1065–1074. https://doi.org/10.1007/s10571-013-9973-0

    Article  PubMed  Google Scholar 

  8. Kunjumon R, Johnson AJ, Baby S (2022) Bacopa monnieri (Brahmi): Phytochemistry and use in traditional ayurvedic formulations. In: Amalraj A, Kuttappan SK, Varma AC (eds) Chemistry, biological activities and therapeutic applications of medicinal plants in Ayurveda. The Royal Society of Chemistry, Croydon, United Kingdom, pp 176–200

  9. Christopher C, Johnson AJ, Mathew PJ, Baby S (2017) Elite genotypes of Bacopa monnieri, with high contents of Bacoside A and Bacopaside I, from southern Western Ghats in India. Ind Crops Prod 98:76–81. https://doi.org/10.1016/j.indcrop.2017.01.018

  10. Deepak M, Sangli GK, Arun PC, Amit A (2005) Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29. https://doi.org/10.1002/pca.805

  11. Xue F, Shi C, Chen Q et al (2017) Melatonin mediates protective effects against kainic acid-induced neuronal death through safeguarding ER stress and mitochondrial disturbance. Front Mol Neurosci 10:1–16. https://doi.org/10.3389/fnmol.2017.00049

    Article  CAS  Google Scholar 

  12. Dar NJ, Bhat JA, Satti NK et al (2017) Withanone, an active constituent from withania somnifera, affords protection against NMDA-induced excitotoxicity in neuron-like cells. Mol Neurobiol 54:5061–5073. https://doi.org/10.1007/s12035-016-0044-7

    Article  CAS  PubMed  Google Scholar 

  13. Kim S, Baek J, Jung U et al (2013) Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes. Nano-Bio Sensing, Imaging, Spectrosc 8879:88790T. https://doi.org/10.1117/12.2017666

    Article  CAS  Google Scholar 

  14. Wesche DL, DeCoster MA, Tortella FC, Brewer TG (1994) Neurotoxicity of artemisinin analogs in vitro. Antimicrob Agents Chemother 38:1813–1819. https://doi.org/10.1128/AAC.38.8.1813

  15. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342. https://doi.org/10.1038/nri1594

    Article  CAS  PubMed  Google Scholar 

  16. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. https://doi.org/10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko Y, Pappas C, Malapira T et al (2017) Extracellular HMGB1 modulates glutamate metabolism associated with kainic acid-induced epilepsy-like hyperactivity in primary rat neural cells. Cell Physiol Biochem 41:947–959. https://doi.org/10.1159/000460513

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Zeng K, Han Y et al (2012) Altered expression of CX3CL1 in patients with epilepsy and in a rat model. Am J Pathol 180:1950–1962. https://doi.org/10.1016/j.ajpath.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  19. Willoughby DA, Johnson SA, Pasinetti GM et al (1992) Amyloid precursor protein mRNA encoding the Kunitz protease inhibitor domain is increased by kainic acid-induced seizures in rat hippocampus. Exp Neurol 118:332–339. https://doi.org/10.1016/0014-4886(92)90191-R

    Article  CAS  PubMed  Google Scholar 

  20. Kaestner KH, Kno W, Martı DE (2000) Unified nomenclature for the winged helix:forkhead transcription factors-Klaus H. Kaestner, Walter Knochel, and Daniel E Martınez. J Neurosci 14:142–146

    CAS  Google Scholar 

  21. Shinoda S, Schindler CK, Meller R et al (2004) Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 113:1059–1068. https://doi.org/10.1172/jci19971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Youn Y, Sung IK, Lee IG (2013) The role of cytokines in seizures : interleukin ( IL ) -1 β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr 56:271–274. https://doi.org/10.3345/kjp.2013.56.7.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jayaraman S (2005) Flow cytometric determination of mitochondrial membrane potential changes during apoptosis of T lymphocytic and pancreatic beta cell lines: comparison of tetramethylrhodamineethylester (TMRE), chloromethyl-X-rosamine (H2-CMX-Ros) and MitoTracker Red 580. J Immunol Methods 306:68–79. https://doi.org/10.1016/j.jim.2005.07.024

  24. Dong XX, Wang YR, Qin S et al (2012) P53 Mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience 207:52–64. https://doi.org/10.1016/j.neuroscience.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  25. Lanigar S, Bandyopadhyay S (2017) Sleep and epilepsy: a complex interplay. Mo Med 114:453–457. https://doi.org/10.4172/2167-0277.1000165

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fung SJ, Xi MC, Zhang JH et al (2007) Apnea promotes glutamate-induced excitotoxicity in hippocampal neurons. Brain Res 1179:42–50. https://doi.org/10.1016/j.brainres.2007.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novati A, Hulshof HJ, Granic I, Meerlo P (2012) Chronic partial sleep deprivation reduces brain sensitivity to glutamate N-methyl-d-aspartate receptor-mediated neurotoxicity. J Sleep Res 21:3–9. https://doi.org/10.1111/j.1365-2869.2011.00932.x

    Article  PubMed  Google Scholar 

  28. Malow BA, Foldvary-Schaefer N et al (2008) Treating obstructive sleep apnea in adults with epilepsy SYMBOL: a randomized pilot trial. Neurology 71:572–577. https://doi.org/10.1212/01.wnl.0000323927.13250.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Natteru P, Rupareliya C, Zhou X, Bollu PC (2017) Obstructive sleep apnea presenting as non-epileptic spells: a unique combination. Cureus 9:. https://doi.org/10.7759/cureus.1800

  30. Şimşek S, Eroǧlu H, Kurum B, Ulubayram K (2013) Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J Microencapsul 30:10–20. https://doi.org/10.3109/02652048.2012.692400

    Article  CAS  PubMed  Google Scholar 

  31. Gayathri V, Harikrishnan V, Mohanan PV (2016) Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration. Int J Biomater 2016:. https://doi.org/10.1155/2016/1067857

  32. Johnson AJ, Venukumar V, Varghese TS et al (2022) Insecticidal properties of Clausena austroindica leaf essential oil and its major constituent, trans-anethole, against Sitophilus oryzae and Tribolium castaneum. Ind Crops Prod 182:114854. https://doi.org/10.1016/j.indcrop.2022.114854

    Article  CAS  Google Scholar 

  33. Kunjumon R, Viswanathan G, Jayasree DV, Biju PG, Prakash P, Sasidharan BCP, Baby S (2022) Anti-excitotoxicity and neuroprotective action of asiaticoside encapsulated polymeric nanoparticles in pilocarpine rodent seizure model. Can J Chem 99:1–9. https://doi.org/10.1139/cjc-2021-0281

    Article  CAS  Google Scholar 

  34. Cheung ECC, Melanson-Drapeau L, Cregan SP et al (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25:1324–1334. https://doi.org/10.1523/JNEUROSCI.4261-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ju ZH, Liang X, Ren YY et al (2021) Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors. Neural Regen Res 16:653–658. https://doi.org/10.4103/1673-5374.295341

    Article  CAS  PubMed  Google Scholar 

  36. Sivadas N, Radhakrishnan A, Aswathy BS et al (2017) Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Behav Brain Res 320:264–274. https://doi.org/10.1016/j.bbr.2016.11.040

    Article  PubMed  Google Scholar 

  37. Radhakrishnan A, Jayakumari N, Kumar VM, Gulia KK (2017) Sleep promoting potential of low dose α-Asarone in rat model. Neuropharmacology 125:13–29. https://doi.org/10.1016/j.neuropharm.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates (Compact third edition). San Diego, United States of America

  39. Williams PA, Hellier JL, White AM et al (2007) Development of spontaneous seizures after experimental status epilepticus: Implications for understanding epileptogenesis. Epilepsia 48:157–163. https://doi.org/10.1111/j.1528-1167.2007.01304.x

    Article  PubMed  Google Scholar 

  40. Singh R, Kesharwani P, Mehra NK et al (2015) Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm 41:1888–1901. https://doi.org/10.3109/03639045.2015.1019355

    Article  CAS  PubMed  Google Scholar 

  41. Saraiva C, Praça C, Ferreira R et al (2016) Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  42. Kunjumon R, Viswanathan G, Baby S (2021) Biocompatible madecassoside encapsulated alginate chitosan nanoparticles, their anti-proliferative activity on C6 glioma cells. Carbohydr Polym Technol Appl 2:100106. https://doi.org/10.1016/j.carpta.2021.100106

    Article  CAS  Google Scholar 

  43. Sekhar VC, Viswanathan G, Baby S (2021) Bacopaside II nanoparticles inhibit proliferation of C6 glioma cells. Phytomedicine Plus 1:100040. https://doi.org/10.1016/j.phyplu.2021.100040

    Article  Google Scholar 

  44. Karatas H, Aktas Y, Gursoy-Ozdemir Y et al (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 29:13761–13769. https://doi.org/10.1523/JNEUROSCI.4246-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorasitthiyanukarn FN, Muangnoi C, Ratnatilaka Na Bhuket P et al (2018) Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Mater Sci Eng C 93:178–190. https://doi.org/10.1016/j.msec.2018.07.069

    Article  CAS  Google Scholar 

  46. Kunjumon R, Viswanathan G, Jayasree DV et al (2021) Madecassoside encapsulated in alginate chitosan nanoparticles exerts anti-excitotoxicity effects in pilocarpine-induced seizure. Phytomedicine Plus 1:100004. https://doi.org/10.1016/j.phyplu.2020.100004

    Article  Google Scholar 

  47. Roseti C, Fucile S, Lauro C et al (2013) Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia 54:1834–1844. https://doi.org/10.1111/epi.12354

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Zhang L, Teng J, Miao W (2018) HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep 17:5125–5131. https://doi.org/10.3892/mmr.2018.8485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Westmark CJ, Westmark PR, Beard AM et al (2008) Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int J Clin Exp Pathol 1:157–168

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobylarek D, Iwanowski P, Lewandowska Z et al (2019) Advances in the potential biomarkers of epilepsy. Front Neurol 10:685. https://doi.org/10.3389/fneur.2019.00685

    Article  PubMed  PubMed Central  Google Scholar 

  51. Demine S, Renard P, Arnould T (2019) Mitochondrial uncoupling: A key controller of biological processes in physiology and diseases. Cells 8:795. https://doi.org/10.3390/cells8080795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu M, Liu X, Chi X et al (2018) Mitophagy in refractory temporal lobe epilepsy patients with hippocampal sclerosis. Cell Mol Neurobiol 38:479–486. https://doi.org/10.1007/s10571-017-0492-2

    Article  CAS  PubMed  Google Scholar 

  53. Auger J, Leonce S, Jouannet P, Ronot X (1993) Flow cytometric sorting of living, highly motile human spermatozoa based on evaluation of their mitochondrial activity. J Histochem Cytochem 41:1247–1251. https://doi.org/10.1177/41.8.8331289

    Article  CAS  PubMed  Google Scholar 

  54. Khryapenkova TG, Plotnikov EY, Korotetskaya MV et al (2008) Heterogeneity of mitochondrial potential as a marker for isolation of pure cardiomyoblast population. Bull Exp Biol Med 146:506–511. https://doi.org/10.1007/s10517-009-0327-3

    Article  CAS  PubMed  Google Scholar 

  55. Sousa AP, Amaral A, Baptista M et al (2011) Not all sperm are equal: Functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One 6:. https://doi.org/10.1371/journal.pone.0018112

  56. Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587. https://doi.org/10.1242/dev.014977

    Article  CAS  PubMed  Google Scholar 

  57. Isokawa M, Levesque MF (1991) Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci Lett 132:212–216. https://doi.org/10.1016/0304-3940(91)90304-C

    Article  CAS  PubMed  Google Scholar 

  58. Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983) Cholinomimetics produce seizures and brain damage in rats. Experientia 39:1408–1411. https://doi.org/10.1007/BF01990130

    Article  CAS  PubMed  Google Scholar 

  59. Thompson SE, Ayman G, Woodhall GL, Jones RSG (2007) Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats. Neurosignals 15:202–215. https://doi.org/10.1159/000098515

    Article  CAS  Google Scholar 

  60. Rice A, Rafiq A, Shapiro SM et al (1996) Long-lasting reduction of inhibitory function and γ-aminobutyric acid type A receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc Natl Acad Sci U S A 93:9665–9669. https://doi.org/10.1073/pnas.93.18.9665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malinski T, Bailey F, Zhang ZG, Chopp M (1993) Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358. https://doi.org/10.1038/jcbfm.1993.48

    Article  CAS  PubMed  Google Scholar 

  62. Staley KJ, Dudek FE (2006) Interictal spikes and epileptogenesis. Epilepsy Curr 6:199–202. https://doi.org/10.1111/j.1535-7511.2006.00145.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala, India and Indian Council Medical Research for funding.

Funding

We acknowledge Kerala State Council for Science, Technology and Environment, Government of Kerala (Grant no. 17/2017/KSCSTE dated 11–04-2017) and Indian Council for Medical Research (ICMR), Government of India (Grant no. 45/35/2018-Nan/BMS dated 16/05/2018) for funding.

Author information

Authors and Affiliations

Authors

Contributions

Vini C. Sekhar: Conceptualization, Methodology, Formal analysis, Writing—original draft, Writing—review & editing. Kamalesh K Gulia: In vivo experimentation and sleep analysis, Manuscript writing and review. Ayswaria Deepti: Methodology, Formal analysis, Manuscript writing and review. Baby Chakrapani PS: Methodology, Formal analysis, Manuscript writing and review. Sabulal Baby: Conceptualization, Project administration, Funding acquisition, Writing—review & editing. Gayathri Viswanathan: Conceptualization, Methodology, Formal analysis, Project administration, Funding acquisition, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Gayathri Viswanathan.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Institutional Animal Ethics Committee of Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram (SCT/ABS/IAEC-107/11 dated 02/12/2020), Kerala, India.

Consent of Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C. Sekhar, V., Gulia, K.K., Deepti, A. et al. Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences. Mol Neurobiol 61, 3296–3313 (2024). https://doi.org/10.1007/s12035-023-03741-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12035-023-03741-w

Keywords

Profiles

  1. Ayswaria Deepti
  2. P. S. Baby Chakrapani