Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Edible Vaccines: Promises and Challenges

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Vaccines are biological preparations that improve immunity to particular diseases and form an important innovation of 19th century research. It contains a protein that resembles a disease-causing microorganism and is often made from weak or killed forms of the microbe. Vaccines are agents that stimulate the body’s immune system to recognize the antigen. Now, a new form of vaccine was introduced which will have the power to mask the risk side of conventional vaccines. This type of vaccine was produced from plants which are genetically modified. In the production of edible vaccines, the gene-encoding bacterial or viral disease-causing agent can be incorporated in plants without losing its immunogenic property. The main mechanism of action of edible vaccines is to activate the systemic and mucosal immunity responses against a foreign disease-causing organism. Edible vaccines can be produced by incorporating transgene in to the selected plant cell. At present edible vaccine are developed for veterinary and human use. But the main challenge faced by edible vaccine is its acceptance by the population so that it is necessary to make aware the society about its use and benefits. When compared to other traditional vaccines, edible vaccines are cost effective, efficient and safe. It promises a better prevention option from diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

US FDA:

United States food and drug administration

IgA:

Immunoglobulin A

DNA:

Deoxyribonucleic Acid

RNA:

Ribonucleic Acid

Ti plasmid:

Tumour-inducing plasmid

E coli:

Escherichia coli

HBsAG:

Hepatitis B surface antigen

CT-B:

Cholera Toxin B

HIV:

Human immuno virus

MSP:

Macrophage stress protein

UreB:

Urease subunit beta- Helicobacter

LAV:

Live-attenuated vaccine

WHO:

World Health Organisation

MALT:

Mucosa-associated lymphoid tissue

SIgA:

Secretory immunoglobulin A

FAE:

Follicular-associated enterocytes

APC:

Antigen submucosal cells

TMV:

Tobacco mosaic virus

PVX:

Powder virus

AIMV:

Alfalfa mosaic virus

CMV:

Cytomegalovirus

VLP:

Virus-like-particle

HBsAG:

Hepatitis B virus surface antigen

SARS:

Severe acute respiratory syndrome

BEVS:

Baculovirus expression vector system

HPV:

Human papilloma virus

FMDV:

Foot-and-mouth-ailment infection

LAB:

Lactic acid bacteria

MSP:

Merozoite surface protein

CTB:

Cholera toxin B

GMP:

Good manufacturing practice

References

  1. Stern, A. M., & Markel, H. (2005). The history of vaccines and immunization: Familiar patterns, new challenges. Health Affairs,24(3), 611–621.

    PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention (CDC). (1999). Ten great public health achievements—United States, 1900–1999. Morbidity and Mortality Weekly Report,281(16), 1481–1483.

    Google Scholar 

  3. Rappuoli, R., Miller, H. I., & Falkow, S. (2002). The intangible value of vaccination. Science,297(5583), 937–939.

    CAS  PubMed  Google Scholar 

  4. Autran, B., et al. (2004). Therapeutic vaccines for chronic infections. Science,305, 205–208.

    CAS  PubMed  Google Scholar 

  5. Greer, A. L. (2015). Early vaccine availability represents an important public health advance for the control of pandemic influenza. BMC Research Notes,8(1), 1–13.

    CAS  Google Scholar 

  6. Huda, T., et al. (2011). An evaluation of the emerging vaccines and immunotherapy against staphylococcal pneumonia in children. BMC Public Health,11(3), 27.

    Google Scholar 

  7. Wang, J., et al. (2004). Single mucosal, but not parenteral, immunization with recombinant adenoviralbased vaccine provides potent protection from pulmonary tuberculosis. Journal of Immunology,173(10), 6357–6365.

    CAS  Google Scholar 

  8. Lycke, N., & Bemark, M. (2010). Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunology,3(6), 556–566.

    CAS  PubMed  Google Scholar 

  9. Lycke, N. (2012). Recent progress in mucosal vaccine development: Potential and limitations. Nature Reviews Immunology,12(8), 592–605.

    CAS  PubMed  Google Scholar 

  10. Holmgren, J., & Czerkinsky, C. (2005). Mucosal immunity and vaccines. Nature Medicine,11, 45–53.

    Google Scholar 

  11. Penney, C. A., et al. (2011). Plant-made vaccines in support of the millennium development goals. Plant Cell Reports,30, 789–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Saxena, J., & Rawat, S. (2014). Edible vaccines. In Advances in biotechnology (pp. 207–226). New Delhi: Springer.

    Google Scholar 

  13. Criscuolo, E., et al. (2019). Alternative methods of vaccine delivery: An overview of edible and intradermal vaccines. Journal of Immunology Research,2019, 13.

    Google Scholar 

  14. Mason, H. S., et al. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proceedings of the National Academy of Sciences USA,89, 11745–11749.

    CAS  Google Scholar 

  15. Hudu, S. A., et al. (2016). An overview of recombinant vaccine technology, adjuvants and vaccine delivery methods. International Journal of Pharmacy and Pharmaceutical Sciences,8, 19–24.

    CAS  Google Scholar 

  16. Mishra, N., et al. (2008). Edible vaccines: A new approach to oral immunization. Indian Journal of Biotechnology,7, 283–294.

    CAS  Google Scholar 

  17. Aboul-Ata, A. A. E., et al. (2014). Plant-based vaccines: Novel and low-cost possible route for mediterranean innovative vaccination strategies. Advances in Virus Research,89, 1–37.

    CAS  PubMed  Google Scholar 

  18. Guan, Z., et al. (2013). Recent advances and safety issues of transgenic plant-derived vaccines. Applied Microbiology and Biotechnology,97(7), 2817–2840.

    CAS  PubMed  Google Scholar 

  19. Kim, M., et al. (2009). Expression of dengue virus E glycoprotein domain III in non-nicotine transgenic tobacco plants. Biotechnology and Bioprocessing Engineering,14(6), 725–730.

    CAS  Google Scholar 

  20. Karasev, A. V., et al. (2005). Plant based HIV-1 vaccine candidate: Tat protein produced in spinach. Vaccine,23(15), 1875–1880.

    CAS  PubMed  Google Scholar 

  21. Dietrich, G., et al. (2003). Experience with registered mucosal vaccines. Vaccine,21(7), 678–683.

    CAS  PubMed  Google Scholar 

  22. Kunisawa, J., et al. (2012). Gut-associated lymphoid tissues for the development of oral vaccines. Advanced Drug Delivery Reviews,64(6), 523–530.

    CAS  PubMed  Google Scholar 

  23. Mabbott, N. A., et al. (2013). Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosa Immunology,6, 666–667.

    CAS  Google Scholar 

  24. Mildner, A., & Jung, S. (2014). Development and function of dendritic cells subsets. Inmmunity,40, 642–646.

    CAS  Google Scholar 

  25. Dalod, M., et al. (2014). Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. The EMBO Journal,33, 1104–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin, C., et al. (2015). CD8α—Dendritic cells induce antigen-specific T follicular helper cells generating efficient humoral immune responses. Cell Reports,11, 1929–1940.

    CAS  PubMed  Google Scholar 

  27. Milpied, P. J., & McHeyzer-Williams, M. G. (2013). High-affinity IgA needs TH17 cell functional plasticity. Nature Immunology,14, 313–315.

    CAS  PubMed  Google Scholar 

  28. Rescigno, M., et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology,2, 361–367.

    CAS  PubMed  Google Scholar 

  29. McDole, J. R., et al. (2012). Goblet cells deliver luminal antigen to CD103+ DCs in the small intestine. Nature,483, 345–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernandez, M., et al. (2014). Transgenic plants: A 5-year update on oral antipathogen vaccine development. Expert Reviews of Vaccines,13, 1523–1536.

    CAS  Google Scholar 

  31. Chan, H.T., & Daniell, H. (2015) Plant-made oral vaccines against human infectious diseases—Are we there yet? Plant Biotechnology Journal,13, 1056–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lamichhane, A., Azegamia, T., & Kiyonoa, H. (2014). The mucosal immune system for vaccine development. Vaccine,32, 6711–6723.

    CAS  PubMed  Google Scholar 

  33. Richman, L. K., et al. (1978). Enterically induced immunologic tolerance. I. Induction of suppressor T lymphoyctes by intragastric administration of soluble proteins. The Journal of Immunology,121, 2429–2434.

    CAS  PubMed  Google Scholar 

  34. Kesik-Brodacka, M., et al. (2017). Immune response of rats vaccinated orally with various plant-expressed recombinant cysteine proteinase constructs when challenged with Fasciola hepatica metacercariae. PLoS Neglected Tropical Diseases,2017, 11.

    Google Scholar 

  35. Clarke, J. L., et al. (2017).Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnology Journal,15(12), 1611–1621.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, B. D. (1998). Biotechnology. New Delhi: Kalyani Publishers.

    Google Scholar 

  37. Madhumita, N., et al. (2014). Edible vaccines—A review. International Journal of Pharmacotherapy,4, 58.

    Google Scholar 

  38. Fauquet, C., et al. (2005). Particle bombardment and the genetic enhancement of crops: Myths and realities. Molecular Breeding,15(3), 305–327.

    Google Scholar 

  39. Ma, H., & Chen, G. (2005). Gene transfer technique. Nature and Science,3(1), 25–31.

    Google Scholar 

  40. Chen, Q., & Lai, H. (2015). Gene delivery into plant cells for recombinant protein production. BioMed Research International.https://doi.org/10.1155/2015/932161

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gomez, E. (2010). Developments in plant-based vaccines against diseases of concern in developing countries. The Open Infectious Diseases Journal,4(2), 55–62.

    Google Scholar 

  42. Kim, T., & Yang, M. (2010). Current trends in edible vaccine development using transgenic plants. Biotechnology and Bioprocess Engineering,15(1), 61–65.

    CAS  Google Scholar 

  43. Shah, C. P., et al. (2011). Edible vaccine: A better way for immunisation. International Journal of Current Pharmaceutical Research,3(1), 1–4.

    CAS  Google Scholar 

  44. Vasil, K., & Vasil, V. (1965). Transformation of wheat via particle bombardment. Plant Cell,111, 9.

    Google Scholar 

  45. Santi, L. (2009). Plant derived veterinary vaccines. Veterinary Research Communications,33(1), 61–66.

    PubMed  Google Scholar 

  46. Arakawa, T., et al. (1997). Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Research,6(6), 403–413.

    CAS  PubMed  Google Scholar 

  47. Wu, L., et al. (2003). Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector. Vaccine,21(27–30), 4390–4398.

    CAS  PubMed  Google Scholar 

  48. Esmael, H., & Hirpa, E. (2015). Review on edible vaccine. Academic Journal of Nutrition,4(1), 40–49.

    CAS  Google Scholar 

  49. Arakawa, T., et al. (1998). Transgenic plants for the production of edible vaccine and antibodies for immunotherapy. Nature Biotechnology,16, 292–297.

    CAS  PubMed  Google Scholar 

  50. William, S. (2002). A review of the progression of transgenic plants used to produce plant bodies for human usage. Journal of Young Investigators,4(2002), 56–61.

    Google Scholar 

  51. Renuga, G., et al. (2014). Transgenic banana callus derived recombinant cholera toxin B subunit as potential vaccine. International Journal of Current Science,10, 61–68.

    Google Scholar 

  52. Yu, J., & Langridge, W. H. (2000). Novel approaches to oral vaccines: Delivery of antigens by edible plants. Current Infectious Disease Reports,2(1), 73–77.

    CAS  PubMed  Google Scholar 

  53. Guan, Z. J., et al. (2013). Recent advances and safety issues of transgenic plant-derived vaccines. Applied Microbiology and Biotechnology,97(7), 2817–2840.

    CAS  PubMed  Google Scholar 

  54. Fujiki, M., et al. (2008). Development of a new cucumber mosaic virus-based plant expression vector with truncated 3a movement protein. Virology,381(1), 136–142.

    CAS  PubMed  Google Scholar 

  55. Dalsgaard, K., et al. (1997). Plant-derived vaccine protects target animals against a viral disease. Nature Biotechnology,15(3), 248–252.

    CAS  PubMed  Google Scholar 

  56. Hefferon, K. L. (2014). DNA virus vectors for vaccine production in plants: Spotlight on geminiviruses.Vaccines,2(3), 642–653.

    PubMed  PubMed Central  Google Scholar 

  57. Hernández, M., et al. (2014). Transgenic plants: A 5-year update on oral antipathogen vaccine development. Expert Review of Vaccines, 13(12), 1523–1536.

    PubMed  Google Scholar 

  58. Rybicki, E. P. (2014). Plant-based vaccines against viruses. Virology Journal,11(1), 205–220.

    PubMed  PubMed Central  Google Scholar 

  59. Landry, N., et al. (2010). Preclinical and clinical development of plant-made virus-like particle vaccine against a vian H5N1 influenza. PLoS One,5(12), e15559.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosales-Mendoza, S., Angulo, C., & Meza, B. (2016). Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends in Biotechnology,34(2), 124–136.

    CAS  PubMed  Google Scholar 

  61. Chanand, H. T., & Daniell, H. (2015). Plant-made oral vaccines against human infectious diseases-are we there yet? Plant Biotechnology Journal,13(8), 1056–1070.

    Google Scholar 

  62. Waheed, M. T., Sameeullah, M., Khan, F. A., et al. (2016). Need of cost-effective vaccines in developing countries: What plant biotechnology can offer? Springer Plus,5(1), 65.

    PubMed  Google Scholar 

  63. Chen, Q., & Davis, K. R. (2016). The potential of plants as a system for the development and production of human biologics. F1000Research,5, 912.

    Google Scholar 

  64. Concha, C., Cañas, R., Macuer, J., et al. (2017). Disease prevention: An opportunity to expand edible plant-based vaccines. Vaccine,5(2), 14–23.

    Google Scholar 

  65. Mason, H. S. (1996). Expression of Norwlak virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proceedings of the National Academy of Sciences USA,93, 5335–5340.

    CAS  Google Scholar 

  66. Oszvald, M., et al. (2007). Expression of a synthetic neutralizing epitope of porcine epidemi c diarrhea virus fused with synthetic b subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Molecular Biotechnology,35, 215–223.

    CAS  PubMed  Google Scholar 

  67. Qian, B., et al. (2008). Immunogenicity of recombinant hepatitis B virus surface antigen fused with preS1 epitope sex pressed in rice seeds. Transgenic Research,17, 621–631.

    CAS  PubMed  Google Scholar 

  68. Kumar, G. B. S., et al. (2005). Expression of hepatitis B surface antigen in transgenic banana plants. Planta,222(3), 484–493.

    CAS  PubMed  Google Scholar 

  69. Estes, M. K., et al. (2006). Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnology Journal,4(4), 419–432.

    PubMed  Google Scholar 

  70. Lou, X. M., et al. (2007). Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clinical and Vaccine Immunology,14(4), 464–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Srinivas, L., et al. (2008). Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.). Plant Biotechnology Reports,2, 1–6.

    Google Scholar 

  72. Kim, T. G., et al. (2007). Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expression and Purification,51(1), 22–27.

    CAS  PubMed  Google Scholar 

  73. Yang, J. S., et al. (2007). Expression of hemagglutinin-neuraminidase protein of Newcastle disease virus in transgenic tobacco. Plant Biotechnology Reports,1, 85–92.

    Google Scholar 

  74. Gómez, E., et al. (2009). Expression of hemagglutinin neuraminidase glycoprotein of Newcastle disease virus in agro infiltrated Nicotiana benthamiana plants. Journal of Biotechnology,144, 337–340.

    PubMed  Google Scholar 

  75. Pérez Filgueira, D. M., et al. (2002). Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology,264(1), 85–91.

    Google Scholar 

  76. Yan-Ju, Y. E., & Wen-Gui, L. I. (2010). Immunoprotection of transgenic alfalfa (Medicago sativa) containing Eg95-EgA31 fusion gene of Echinococcus granulosus against Eg protoscoleces. Journal of Tropical Medicine,3, 10–13.

    Google Scholar 

  77. Zhang, H., et al. (2010). Oral immunogenicity and protective efficacy in mice of a carrot-derived vaccine candidate expressing UreB subunit against Helicobacter pylori. Protein Expression and Purification,69, 127–131.

    CAS  PubMed  Google Scholar 

  78. Ekam, V. S., Udosen, E. O., & Chighu, A. E. (2006). Comparative effect of carotenoid complex from Golden Neo-Life Dynamite and carrot extracted carotenoids on immune parameters in Albino Wistar rats. Nigerian Journal of Physiological Sciences,21, 1–4.

    CAS  PubMed  Google Scholar 

  79. Specht, E. A., & Mayfield, S. P. (2014). Algae-based oral recombinant vaccines. Frontiers in Microbiology,5, 60.

    PubMed  PubMed Central  Google Scholar 

  80. Franklin, S. E., & Mayfield, S. P. (2005). Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opinion on Biological Therapy,5(2), 225–235.

    CAS  PubMed  Google Scholar 

  81. He, D.-M., et al. (2007). Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids and Surfaces B: Biointerfaces,55(1), 26–30.

    CAS  PubMed  Google Scholar 

  82. Franconi, R., Demurtas, O. C., & Massa, S. (2010). Plant-derived vaccines and other therapeutics produced in contained systems. Expert Review of Vaccines,9(8), 877–892.

    CAS  PubMed  Google Scholar 

  83. Dreesen, I. A. J., Hamri, G. C. E., & Fussenegger, M. (2010). Heatstable oral alga-based vaccine protects mice from Staphylococcus aureus infection. Journal of Biotechnology,145(3), 273–280.

    CAS  PubMed  Google Scholar 

  84. Mena, J. A., & Kamen, A. A. (2011). Insect cell technology is a versatile androbust vaccine manufacturing platform. Expert Review of Vaccines,10(7), 1063–1081.

    CAS  PubMed  Google Scholar 

  85. Legastelois, I., et al. (2017). Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Human Vaccines & Immunotherapeutics,13(4), 947–961.

    Google Scholar 

  86. Gong, Z., Jin, Y., & Zhang, Y. (2005). Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes. Journal of Biotechnology,119(1), 93–105.

    CAS  PubMed  Google Scholar 

  87. Zhang, X., et al. (2011). Expression of UreB and HspA of Helicobacter pylori in silkworm pupae and identification of its immunogenicity. Molecular Biology Reports,38(5), 3173–3180.

    CAS  PubMed  Google Scholar 

  88. Feng, H., et al. (2014). Canine parvovirus VP2 protein expressed in silkworm pupae self-assembles into virus-like particles with high immunogenicity. PLoS One,9(1), e79575.

    PubMed  PubMed Central  Google Scholar 

  89. Mattanovich, D., et al. (2012). Recombinant protein production in yeasts. Methods in Molecular Biology,824, 329–358.

    CAS  PubMed  Google Scholar 

  90. Treebupachatsakul, T., et al. (2016). Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Journal of Bioscience and Bioengineering,121, 27–35.

    CAS  PubMed  Google Scholar 

  91. Jacob, D., et al. (2014). Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS One,9, e86658.

    PubMed  PubMed Central  Google Scholar 

  92. Tomimoto, K., et al. (2013). Protease-deficient Saccharomyces cerevisiae strains for the synthesis of humancompatible glycoproteins. Bioscience, Biotechnology, and Biochemistry,77(12), 2461–2466.

    CAS  PubMed  Google Scholar 

  93. Han, M., & Yu, X. (2015). Enhanced expression of heterologous proteins in yeast cells via the modification of N-glycosylation sites. Bioengineered,6(2), 115–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shin, S. J., et al. (2005). Induction of antigen-specific immune responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus pleuropneumoniae ApxIIA. FEMS Immunology and Medical Microbiology,43(2), 155–164.

    CAS  PubMed  Google Scholar 

  95. Kim, H. J., et al. (2014). Oral immunization with whole yeast producing viral capsid antigen provokes a stronger humoral immune response than purified viral capsid antigen. Letters in Applied Microbiology,58(3), 285–291.

    CAS  PubMed  Google Scholar 

  96. Huang, H., et al. (2013). Characterization and optimization of the glucan particle-based vaccine platform. Clinical and Vaccine Immunology,20(10), 1585–1591.

    CAS  PubMed  Google Scholar 

  97. Marcobal, A., Liu, X., Zhang, W., et al. (2016). Expression of human immunodeficiency virus type 1 neutralizing antibody fragments using human vaginal lactobacillus. AIDS Research and Human Retroviruses,32(10–11), 964–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jiménez, J. J., et al. (2015). Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microbial Cell Factories,14(1), 166.

    PubMed  PubMed Central  Google Scholar 

  99. Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discovery Today,19(5), 590–601.

    CAS  PubMed  Google Scholar 

  100. Roland, K. L., et al. (2005). Recent advances in the development of live, attenuated bacterial vectors. Current Opinion in Molecular Therapeutics,7(1), 62–72.

    CAS  PubMed  Google Scholar 

  101. Wang, X., Zhang, X., Zhou, D., & Yang, R. (2016). Live-attenuated Yersinia pestis vaccines. Expert Review of Vaccines,12(6), 677–686.

    Google Scholar 

  102. Gao, S., Li, D., et al. (2015). Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. International Immunopharmacology,24(1), 140–145.

    CAS  PubMed  Google Scholar 

  103. Wang, X., et al. (2014). Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine,32(12), 1338–1345.

    CAS  PubMed  Google Scholar 

  104. Zhou, Z., et al. (2015). Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. Journal of Medical Microbiology,64(1), 104–110.

    CAS  Google Scholar 

  105. Tacket, C. O., et al. (1998). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nature Medicine,4(5), 607–609.

    CAS  PubMed  Google Scholar 

  106. Tacket, C. O., et al. (2004). Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine,22(31–32), 4385–4389.

    Google Scholar 

  107. Tacket, C. O., et al. (2000). Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. The Journal of Infectious Diseases,182(1), 302–305.

    CAS  PubMed  Google Scholar 

  108. Yusibov, V., et al. (2002). Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine,20(25–26), 3155–3164.

    CAS  PubMed  Google Scholar 

  109. Kapusta, J., et al. (1999). A plant-derived edible vaccine against hepatitis B virus. The FASEB Journal,13(13), 1796–1799.

    CAS  PubMed  Google Scholar 

  110. Thanavala, Y., et al. (2005). Immunogenicity in humans of an edible vaccine for hepatitis B. Proceedings of the National Academy of Sciences of the United States of America,102(9), 3378–3382.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nochi, T., et al. (2009). A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. Journal of Immunology,183(10), 6538–6544.

    CAS  Google Scholar 

  112. Yuki, Y., et al. (2013). Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. Plant Biotechnology Journal,11(7), 799–808.

    CAS  PubMed  Google Scholar 

  113. Lok, A. S., et al. (2016). Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. Journal of Hepatology,65(3), 509–516.

    CAS  PubMed  Google Scholar 

  114. Haller, A. A., et al. (2007). Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine,25(8), 1452–1463.

    CAS  PubMed  Google Scholar 

  115. Huang, Z., et al. (2001). Plant-derived measles virus hemagglutinin protein induces neutralizing antibodies in mice. Vaccine,19(15–16), 2163–2171.

    CAS  PubMed  Google Scholar 

  116. Fakheri, B. (2015). Overview of plant-based vaccines. Research Journal of Fisheries and Hydrobiology,10, 275–289.

    Google Scholar 

  117. Ajaz, M., et al. (2011). Edible vaccine vegetables as alternative to needles. International Journal of Current Research,33, 18–26.

    Google Scholar 

  118. Webster, D. E., et al. (2002). Appetising solutions: An edible vaccine for measles. Medical Journal of Australia,176, 434–437.

    PubMed  Google Scholar 

  119. Leiferman, K. M., et al. (1999). Production of atypical measles in rhesus macaques: Evidence for disease mediated by immune complex formation and eosinophils in the presence of fusion-inhibiting antibody. Nature Medicine,5, 629–634.

    PubMed  Google Scholar 

  120. Giddings, G., Allison, G., Brooks, D., & Carter, A. (2000). Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology,18, 1151–1155.

    CAS  PubMed  Google Scholar 

  121. Richter, L. J., et al. (2000). Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nature Biotechnology,18, 1167.

    CAS  PubMed  Google Scholar 

  122. Langridge, W. H. (2000). Edible vaccines. Scientific American,283, 66–71.

    CAS  PubMed  Google Scholar 

  123. Wang, F., et al. (2006). Generation and assembly of secretory antibodies in plants. Science,268(5211), 716–719.

    Google Scholar 

  124. Mason, H. S., et al. (1995). Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science,268(5211), 714–716.

    PubMed  Google Scholar 

  125. Streatfield, S. J., et al. (2001). Plant-based vaccines: Unique advantages. Vaccine,19(17–19), 2742–2748.

    CAS  PubMed  Google Scholar 

  126. Clemens, J. D., et al. (1992). Evidence that inactivated oral cholera vaccines both prevent and mitigate Vibrio cholerae O1 infections in a cholera-endemic area. Journal of Infectious Diseases,166(5), 1029–1034.

    CAS  PubMed  Google Scholar 

  127. Arakawa, T., et al. (1998). Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotechnology,16(3), 292–297.

    CAS  PubMed  Google Scholar 

  128. Arakawa, T., et al. (1999). Food plant-delivered cholera toxin B subunit for vaccination and immune tolerization. Advances in Experimental Medicine and Biology,464, 161–178.

    CAS  PubMed  Google Scholar 

  129. Glass, R. I., et al. (2000). The epidemiology of enteric calici viruses from humans: a reassessment using new diagnostics. The Journal of Infectious Diseases,181(2), 54–61.

    Google Scholar 

  130. Xi, J. N., et al. (1990). Norwalk virus genome cloning and characterization. Science,250(4987), 1580–1583.

    CAS  PubMed  Google Scholar 

  131. Mason, H. S., et al. (1998). Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): Potatoes expressing a synthetic LT-B gene. Vaccine,16, 1336–1343.

    CAS  PubMed  Google Scholar 

  132. Kim, T. G., Galloway, D. R., & Langridge, W. H. (2004). Synthesis and assembly of anthrax lethal factor-cholera toxin B-subunit fusion protein in transgenic potato. Molecular Biotechnology,28, 175–183.

    CAS  PubMed  Google Scholar 

  133. Swapna, L. A. (2013). Edible vaccines: A new approach for immunization in plant biotechnology. Scholars Academic Journal of Pharmacy,2, 227–232.

    Google Scholar 

  134. Zapanta, P. E., & Ghorab, S. (2014). Age of bioterrorism. Otolaryngology,151(2), 208–214.

    Google Scholar 

  135. Kim, N. S., et al. (2016). Chimeric vaccine stimulation of human dendritic cell indoleamine 2,3-dioxygenase occurs via the non-canonical NF-kB pathway. PLoS One,11(2), 1–16.

    Google Scholar 

  136. Van der Laan, J. W., et al. (2006). WHO informal consultation on scientific basis for regulatory evaluation of candidate human vaccines from plants, Geneva, Switzerland. Vaccine,24, 4271–4278.

    PubMed  Google Scholar 

  137. Maxwell, S. (2014). Analysis of laws governing combination products, transgenic food, pharmaceutical products and their applicability to edible vaccines. BYU Prelaw Review,28, 65–82.

    Google Scholar 

  138. Ramachandran, V. G., et al. (2007). Edible vaccines: Current status and future. Indian Journal of Medical Microbiology,25, 93–102.

    PubMed  Google Scholar 

  139. Harlé, J. R., et al. (2010). Pepper mild mottle virus, a plant virus associated with specific immune responses, fever, abdominal pains, and pruritus in humans. PLoS One,5, e10041.

    PubMed  PubMed Central  Google Scholar 

  140. Hirlekar, R., & Bhairy, S. (2017). Edible vaccines: An advancement in oral immunization. Facilities,16, 20.

    Google Scholar 

  141. Twyman, R. M., et al. (2005). Transgenic plants in the biopharmaceutical market. Expert Opinion on Emerging Drugs,10(1), 185–218.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Thomas.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors

Informed Consent

Not applicable

Research Involving Human and Animal Participants

The article being a pure review, It does not involve any human volunteers or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurup, V.M., Thomas, J. Edible Vaccines: Promises and Challenges. Mol Biotechnol 62, 79–90 (2020). https://doi.org/10.1007/s12033-019-00222-1

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12033-019-00222-1

Keywords