Abstract
The article reviews the results of the studies of marker parameters (indicators) of various pathways and mechanisms of apoptosis of lymphocytes in donor peripheral blood induced by UV light (240–390 nm) in doses of 151, 1510, and 3020 J/m2. The article analyses the processes of DNA fragmentation, distortion of the structural asymmetry of the cell membranes, changes in the degree of DNA damage (single-strand breaks), transcriptional factor р53, cytochrome с, Fas receptors (CD95), caspase-3, caspase-8, and caspase-9, reactive oxygen species, and calcium ions in UV modified cells. The study determined that programmed cell death of lymphocytes after UV irradiation with 1510 J/m2 involves the р53-dependent pathway of the nuclear mechanism, as well as receptor-mediated caspase mechanism, mitochondrial mechanism, and the mechanism associated with the defects in calcium homeostasis. Cell death is mediated by reactive oxygen and calcium ions. The article suggests a scheme of possible intracellular events resulting in the apoptotic death of lymphocytes after UV irradiation.
Similar content being viewed by others
Data availability
Not applicable.
References
Abe M, Ishikawa O, Miyachi Y, Kanai Y (1997) In vitro spontaneous and UVB-induced lymphocyte apoptosis are not specific to sle. Photodermatol Photoimmunol Photomed 13(5-6):204–207. https://doi.org/10.1111/j.1600-0781.1997.tb00232.x
Appelqvist H, Wäster P, Eriksson I, Rosdahl I, Ollinger K (2013) Lysosomal exocytosis and caspase-8-mediated apoptosis in irradiated keratinocytes. J Cell Sci 126:5578–5584. https://doi.org/10.1242/jcs.130633
Aragane Y, Kulms D, Metze D (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182. https://doi.org/10.1083/jcb.140.1.171
Artyukhov VG, Trubicina MS, Nakvasina MA, Solovieva EV (2011) DNA Fragmentation of human lymphocytes in dynamics of development of apoptosis induced by action of UV radiation and reactive oxygen species. Cell Tis Biol 5(2):61–67. https://doi.org/10.1134/S1990519X11020039
Baines CP, Molkentin JD (2005) Stress signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62. https://doi.org/10.1016/j.yjmcc.2004.11.004
Banfali G (2017) Methods to detect apoptotic cell death. Apoptosis 22(2):306–323. https://doi.org/10.1007/s10495-016-1333-3
Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293. https://doi.org/10.1126/science.282.5387.290
Caricchio R, Reap EA, Cohen PL (1998) Fas/Fas ligand interactions are involved in ultraviolet–B–induced human lymphocyte apoptosis. J Immunol 161:241–251. https://doi.org/10.4049/j.immunol.161.1.241
Cooper TG, Beevers HJ (1969) Mitochondria and glyoxysomes from castor bean endosperm enzyme constitutens and catalytic capacity. J Biol Chem 244:3507–3513
Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640. https://doi.org/10.1016/j.it.2014.10.004
Deng H, Yan CL, Hu Y, Xu Y, Liao KH (2004) Photochemotherapy inhibits angiogenesis and induced apoptosis of endothelial cells in vitro. Photodermatol Photoimmunol Photomed 20(4):191–199. https://doi.org/10.1111/j.1600-0781.2004.00099.x
Elmore S (2007) Apoptosis: a review of programmed cell death. J Toxicol Pathol 61:43–58. https://doi.org/10.1080/01926230701320337
Engel P, Francis D, Graem N (1998) Expression of bcl-2 in fetal thymus, thymomas and thymic carcinomas. Association with p53 expression and review of the literature. APMIS 106:449–455. https://doi.org/10.1111/j.1699-0463.1998.tb01370.x
Favaloro B, Allocati N, Graziano V, Dillio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging 4(5):330–349. https://doi.org/10.18632/aging.100459
Filatov MV, Pantina RA, Noskin LA (1998) Methods for registration of spontaneous DNA instability in mammalian cells. Mutat Res 403(1-2):95–101. https://doi.org/10.1016/s0027-5107(98)00056-6
Fortin A, Cregan SP, Mac Laurin JG, Kushwaha N, Hickman ES, Thompson CS, Hakim A, Albert PR, Cecconi F, Helin K, Park DS, Slack RS (2001) APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J Cell Biol 155:207–216. https://doi.org/10.1083/jcb.200105137
Girotti AW (2001) Photpsenssitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B, Biol 63(1-3):103–113. https://doi.org/10.1016/s1011-1344(01)00207-x
Gottlieb TM, Oren M (1998) P53 and apoptosis. Semin Cancer Biol 8:359–368. https://doi.org/10.1006/scbi.1998.0098
Green DR, Llambi F (2015) Cell death signaling. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006080
Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251:98–102. https://doi.org/10.1006/abio.1997.2220
Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis 18:45–51. https://doi.org/10.1093/mutage/18.1.45
Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR (1994) A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 22(24):5506–5507. https://doi.org/10.1093/nar/22.24.5506
Hirst RA, Harrison C, Hirota K, Lambert DG (2005) Measurement of [Ca2+]i in whole cell suspensions using fura-2. Methods Mol Biol 312:37–45. https://doi.org/10.1385/1-59259-949-4:037
Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117. https://doi.org/10.1038/nm1001-1111
Julien O, Wells IA (2017) Caspases and their substrates. Cell Death and Differ 24:1380–1389
Kaufmann S, Lee S-H, Meng X, Loegering D, Kottke T, Heinzing AJ, Ruchaud S, Samejima K, Earnshaw W (2008) Apoptosis-associated caspase activation assays. Methods 44:262–272. https://doi.org/10.1016/j.ymeth.2007.11.005
Klaus J (1990) Lymphocytes. In: Methods. Mir, Moscow
Kulms D, Schwarz T (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 16:195–201. https://doi.org/10.1034/j.1600-0781.2000.160501.x
Kumar S (2004) Measurement of caspase activity in cells undergoing apoptosis. Methods Mol Biol 282:19–30. https://doi.org/10.1385/1-59259-812-9:019
Martin SJ, Gotter TG (1991) Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. Int J Radiat Biol 59(4):1001–1016. https://doi.org/10.1080/09553009114550891
Mates JM, Sanchez-Jimenez FM (2000) Apoptosis role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32(2):157–170. https://doi.org/10.1016/s1357-2725(99)00088-6
Mc Ilwain DR, Berger T, Mak TW (2015) Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology 7(4):1–28. https://doi.org/10.1101/cshperspect.a008656
Miyashita T, Reed JC (1995) Tumor supressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299. https://doi.org/10.1016/0092-8674(95)90412-3
Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F, Muller H, Helin K (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3:552–558. https://doi.org/10.1038/35078527
Murahashi H, Azuma H, Zamzami N, Furuya K, Ikebuchi K, Yamaguchi M, Yamada Y, Sato N, Fujihara M, Kroemer G, Ikeda H (2003) Possible contribution of apoptosis-inducing factor (AIF) and reactive oxygen species (ROS) to UVB-induced caspase-independent cell death in the T cell line Jurkat. J Leukoc Biol 73:399–406. https://doi.org/10.1189/jlb.0702335
Nakano K, Vousden KH (2001) Puma, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694. https://doi.org/10.1016/s1097-2765(01)00214-3
Nakvasina MA, Popova LI, Artyukhov VG, Lidokhova OV (2019) Modulation of structural and functional properties of human lymphocytes by reactive oxygen species. Bull Exp Biol Med 166(4):481–486. https://doi.org/10.1007/S10517-019-04377-4
Nakvasina MA, Tokmakova EV, Koltakov IA, Artyukhov VG (2020) Antiapoptotic effects of caffeine, genistein, and verapamil in relation to UV-irradiated lymphocyte cells. Biol Bull Rus Acad Sci 47(11):1547–1551. https://doi.org/10.1134/S1062359020110114
Nakvasina MA, Trubicina MS, Solovieva EV, Artyukhov VG (2012) Ways of apoptosis development in human lymphocytes, induced by UV-irradiation. Biophysics (Oxf) 57(4):477–484. https://doi.org/10.1134/S0006350912040124
Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y, Taya Y (2000a) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by ser-46-phosphorylated p53. Cell 102(6):849–862. https://doi.org/10.1016/s0092-8674(00)00073-8
Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Tanaka N (2000b) Noxa, a BH3-only member of the bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058. https://doi.org/10.1126/science.288.5468.1053
Okamoto M, Koga S, Tatsuka M (2010) Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells. Mutat Res 688(1-2):78–87. https://doi.org/10.1016/j.mrfmmm.2010.03.012
Olive PL, Banath JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “Comet” assay. Radiat Res 122:86–94. https://doi.org/10.1667/rrav04.1
Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15(6):3032–3040. https://doi.org/10.1128/MCB.15.6.3032
Ozawa BM, Ferenczi K, Kikuchi T, Cardinale I, Austin LM, Coven TR, Burack LH, Krueger JG (1999) 312-nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. Exp Med 189(4):711–718. https://doi.org/10.1084/jem.189.4.711
Park G, Kim HG, Hong SP, Kim SY, Oh MS (2014) Walnuts (seeds of Juglandis sinensis L) protect human epidermal keratinocytes against UVB-induced mitochondria-mediated apoptosis through upregulation of ROS elimination pathways. Skin Pharmacol Physiol 27:132–140. https://doi.org/10.1159/000354917
Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305. https://doi.org/10.1038/38525
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259. https://doi.org/10.1016/j.bbamcr.2010/10/010
Rastogi RP, Singh SP, Häder DP, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397(3):603–607. https://doi.org/10.1016/j.bbrc.2010.06.006
Robles AI, Bemmels NA, Foraker AB, Harris CC (2001) APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 61:6660–6664
Roshchupkin DI, Murina MA (1993) Animal cells, tissues and organs to ultraviolet radiation. Biophysics (Oxf) 38(6):1083–1097
Salucci S, Burattini S, Curzi D, Buontempo F, Martelli AM, Zappia G, Falcieri E, Battistelli M (2014) Antioxidants in the prevention of UVB-induced keratynocyte apoptosis. J Photochem Photobiol B, Biol 141:1–9. https://doi.org/10.1016/j.jphotobiol.2014.09.004
Scoltock AB, Cidlowski JA (2004) Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C induced death of Jurkat cells: the role of caspase inhibition. Exp Cell Res 297(1):212–223. https://doi.org/10.1016/j.yexcr.2004.03.025
Scoranno L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41:1875–1883. https://doi.org/10.1016/j.biocel.2009.04.016
Servomaa K, Rytomaa T (1990) UV light and ionizing radiations cause programmed death of rat chloroleukaemia cells by inducing retropositions of a mobile DNA element (L1Rn). Photodermatol Photoimmunol Photomed 57(2):331–343. https://doi.org/10.1080/09553009014552441
Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Dif 22(4):526–539. https://doi.org/10.1038/cdd.2014.216
Shaw PH (1996) The role of p53 in cell cycle regulation. Pathol Res Pract 192(7):669–675. https://doi.org/10.1016/s0344-0338(96)80088-4
Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193. https://doi.org/10.1038/s41580-018-0089-8
Singh NP, Mc Coy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res 175:184–192. https://doi.org/10.1016/0014-4827(88)-90265-0
Spielberg H, June CH, Blair OC, Nystrom-Rosander C, Cereb N, Deeg HJ (1991) UV irradiation of lymphocytes triggers an increase in intracellular Ca2+ and prevents lectin-stimulated Ca2+ mobilization: evidence for UV- and nifedipine-sensitive Ca2+ channels. Exp Hematol 19:742–748
Ulukay E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480. https://doi.org/10.1002/cbf.1774
Vermes I, Haansen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin. J Immunol Methods 184:39–51. https://doi.org/10.1016/0022-1759(95)00072-i
Vladimirov Yu A (1998) Free radicals in primary photobiological processes. Biochem (Mosc) Suppl Ser A Membr Cell Biol 12(5):645–663
Vousden KH (2000) P53. Death star. Cell. 103:691–694. https://doi.org/10.1016/s0092-8674(00)00171-9
Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604. https://doi.org/10.1038/nrc864
Wickremasinghe RG, Prentice AG, Steele AJ (2011) p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25(9):1400–14007. https://doi.org/10.1038/leu.2011.103
Wu GS, Burns TF, Mc Donald ER 3rd, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, el-Deiry WS (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143. https://doi.org/10.1038/ng1097-141
Wu X, Hu X, Hamblin MR (2016) Ultraviolet blood irradiation: is it time to remember “the cure that time forgot”? J Photochem Photobiol B, Biol 157:89–96. https://doi.org/10.1007/978-3-319-56017-5-25
Wu C, Wu Q, Du J, Zeng J, Li T, Xu C, Sun Y (2015) Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Mol Immunol 62(2):337–342. https://doi.org/10.1016/j.molimm.2014.08.007
Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682. https://doi.org/10.1016/s1097-2765(01)00213-1
Funding
This research was funded by the Ministry of Science and Higher Education of Russia under Agreement No. FZGU-2023-0009.
Author information
Authors and Affiliations
Contributions
Conceptualization—MAN, VGA; methodology and investigation—MSR, OVL; project administration—MAN, MGH, VGA; supervision—MAN, VGA; funding acquisition—MAN, MGH, VGA; writing of original draft preparation, review and editing—MAN, MGH, VGA.
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nakvasina, M., Holyavka, M., Artyukhov, V. et al. Mechanisms of UV-induced human lymphocyte apoptosis. Biophys Rev 15, 1257–1267 (2023). https://doi.org/10.1007/s12551-023-01142-w
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s12551-023-01142-w