Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Nrf2 acts as a sensor of oxidative or electrophilic stress and prevents genome instability. The activation of Nrf2 signaling induces ARE-dependent expression of detoxifying and antioxidant defense proteins. Nrf2-ARE signaling has become an attractive target for cancer chemoprevention. On the other hand, constitutive over-activation of Nrf2 in cancer cells has been implicated in cancer progression as well as in resistance to cancer chemotherapeutics.

Two basic Nrf2 activation pathways were described. The canonical pathway is the primary mechanism of Nrf2 activation and is based on dissociation of Nrf2 from its inactive complex with the repressor protein Keap1 and the subsequent translocation of Nrf2 into the nucleus. Numerous proteins which compete with Nrf2 for Keap1 binding stabilize Nrf2 and are involved in non-canonical pathways of Nrf2 activation.

However, growing evidence indicates that the regulation of Keap1-Nrf2-ARE is more complex than was previously thought and that other molecular mechanisms are also involved. Among them is epigenetic regulation of Nrf2 and Keap1, which seems to be a particularly interesting subject for future studies. Nrf2 has become an important chemopreventive and therapeutic target, and many natural and synthetic chemicals have been described as its modulators. However, most small molecules which are either inducers or inhibitors of Nrf2 may provoke “off-target” toxic effects because of their electrophilic character.

This review highlights Nrf2-ARE activation pathways and their role in cancer prevention and therapy. A critical evaluation of currently available Nrf2 inducers and inhibitors is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARE:

antioxidant response element

ATRA:

all-trans-retinoic acid

bZip:

basic leucine zipper

CBP:

CREB-binding protein

CNC:

cap ‘n’ collar

ERK:

extracellular signal-regulated kinase

HO-1:

heme oxygenase-1

JNK:

c-Jun-NH2-terminal kinase

Keap1:

Kelch-like ECH-associated protein 1

Maf:

musculo-aponeurotic fibrosarcoma protein

miRs:

microRNAs

Nrf2:

NF-E2-nuclear factor erythroid-derived 2

NLS:

nuclear localization signal

PERK:

PKR-like endoplasmic reticulum-resident kinase

PKC:

protein kinase C

β-TrCP:

β-transducin repeat-containing protein

SNP:

single nucleotide polymorphism

UPS:

ubiquitin proteasome system

References

  1. Geisman C, Arlt A, Sebens S, Schäfer H. Cytoprotection gone astray: Nrf2 and its role in cancer. Onco Targets Ther 2014;7:1497–518.

    Google Scholar 

  2. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010;13(11):1713–48.

    Article  CAS  PubMed  Google Scholar 

  3. Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Pronzato MA, et al. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016(30 November), doi:https://doi.org/10.1155/2016/1958174 published online.

  4. Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and Rother cytoprotective mechanisms, is raised by health promoting factors. Acta Physiol Sin 2015;67(1):1–18.

    CAS  Google Scholar 

  5. Namani A, Li Y, Wang XJ, Tang X. Modulation of Nrf2 signaling pathway by nuclear receptors: implications for cancer. Biochim Biophys Acta 2014;1843 (9):1875–85.

    Article  CAS  PubMed  Google Scholar 

  6. Xiang MJ, Namani A, Wu SJ, Wang XL. Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol 2014;140(8):1251–9.

    Article  CAS  PubMed  Google Scholar 

  7. Keum YS, Choi BY. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 2014;19(7):10074–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of Nrf2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016;1-27, doi:https://doi.org/10.1080/03602532.2016.1197239.

    Article  CAS  PubMed  Google Scholar 

  9. Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev 2016;36(5):924–63.

    Article  CAS  PubMed  Google Scholar 

  10. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85(4):241–72.

    Article  CAS  PubMed  Google Scholar 

  11. Jung KA, Kwak MK. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 2010;15(10):7266–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Nat Acad Sci USA 2002;99(18):11908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 2004;279(19):20108–17.

    Article  CAS  PubMed  Google Scholar 

  14. Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B 2015;5(4):285–99.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chowdhry S, Zhang Y, McMahon M, Sutherland Y, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013;32(32):3765–81.

    Article  CAS  PubMed  Google Scholar 

  16. Jain AK, Jaiswal AK. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 2007;282(22):16502–10.

    Article  CAS  PubMed  Google Scholar 

  17. Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. Nrf2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacol 2014;79:298–306.

    Article  CAS  Google Scholar 

  18. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, et al. Proteomic analysis of ubiquitin ligase Keap1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 2013;73(7):2199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 2010;30(13):3275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harder B, Jiang T, Wu T, Tsa S, Rojo de la Vega M, Tian W, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 2015;43(4):680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo Y, Yu S, Zhang C, Kong AN. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 2015;88(Pt B):337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khor TO, Fuentes F, Shu L, Paredes Gonzalez X, Yang AY, et al. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res (Phila) 2014;7(12):1186–97.

    Article  CAS  PubMed Central  Google Scholar 

  23. Muscarella LA, Parrella P, D’Alessandro V, la Torre A, Barbano R, Fontana A, et al. Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 2011;6(6):710–9.

    Article  CAS  PubMed  Google Scholar 

  24. Barbano R, Muscarella LA, Pasculli B, Valori VM, Fontana A, Coco M, et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 2013;8(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang B, Xu J, Li C, Shi S, Ji S, Xu W, et al. MBD1 is an epigenetic regulator of KEAP1 in pancreatic. Cancer Curr Mol Med 2016;16(4):404–11.

    Article  CAS  PubMed  Google Scholar 

  26. Abu-Alainin W, Gana T, Liloglou T, Olayanju A, Barrera LN, Ferguson R, et al. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. J Pathol 2016;238(3):423–33.

    Article  CAS  PubMed  Google Scholar 

  27. Hussong M, Borno ST, Kerick M, Wunderlich A, Franz A, Sűltmann H, et al. The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Dis 2014;5:e1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ayers D, Baron B, Hunter T. miRNA influences in NRF2 pathway interactions within cancer models. J Nucleic Acids 20152015(9 August), doi:https://doi.org/10.1155/2015/143636 published online.

  29. Kabaria S, Choi DC, Chaudhuri AD, Jain MR, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med 2015;89:548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi L, Wu L, Chen Z, Yang J, Chen X, Yu F, et al. MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cell Physiol Biochem 2015;35(6):2333–48.

    Article  CAS  PubMed  Google Scholar 

  31. Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 2011;286(47):40725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim JH, Lee KS, Lee DK, Kim J, Kwak SN, Ha KS, et al. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antioxid Redox Signal 2014;21(18):2469–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto S, Inoue J, Kawano T, Kozaki K, Omura K, Inazawa J. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res:MCR 2014;12(1):58–68.

    Article  CAS  PubMed  Google Scholar 

  34. Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 2011;129(3):983–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010;116(20):4338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang X, Gao Y, Qin J, Lu S. The role of miR-34a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. PLoS One 2014;9(11):e113305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Do MT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 2014;74:21–34, doi:https://doi.org/10.1016/j.freeradbiomed.2014.06.010.

    Article  PubMed  CAS  Google Scholar 

  38. Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 2013;34(5):1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stachurska A, Ciesla M, Kozakowska M, Wolffram S, Boesch-Saadatmandi C, Rimbach G, et al. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol Nutr Food Res 2013;57(3):504–15.

    Article  CAS  PubMed  Google Scholar 

  40. Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 2012;7(12):e51111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narasimhan M, Riar AK, Rathinam ML, Vedpathak D, Henderson G, Mahimainathan L. Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett 2014;228(3):179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang B, Teng Y, Liu Q. MicroRNA-153 Regulates NRF2 expression and is associated with breast carcinogenesis. Clin Lab 2016;62(1–2):39–47.

    CAS  PubMed  Google Scholar 

  43. Shi L, Chen Z-G, Wu L-l Zheng JJ, Yang JR, Chen XF, et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev 2015;15:10439–44.

    Article  Google Scholar 

  44. Suzuki T, Shibata K, Takaya K, Shiraishi K, Kohno T, Kunitoh H, et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol Cell Biol 2013;33(12):2402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012;22(1):66–79.

    Article  CAS  PubMed  Google Scholar 

  46. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY. Dinkova-Kostova AT: Nrf2 affects the efficiency of mitochondria fatty acid oxidation. Biochem J 2014;457(3):415–24.

    Article  CAS  PubMed  Google Scholar 

  47. Mitsuishi H, Motohashi H, Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2012;2:200, doi:https://doi.org/10.3389/fonc.2012.00200.

    Article  PubMed  PubMed Central  Google Scholar 

  48. You A, Nam CW, Wakabayashi N, Yamamoto M, Kensler TW, Kwak MK. Transcription factor Nrf2 maintains the basal expression of Mdm2: an implication of the regulation of p53 signaling by Nrf2. Arch Biochem Biophys 2011;507(2):356–64.

    Article  CAS  PubMed  Google Scholar 

  49. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Gen Develop 2013;27(20):2179–91.

    Article  CAS  Google Scholar 

  50. Slocum SL, Kensler TW. Nrf2: control of sensitivity to carcinogens. Arch of Toxicol 2011;85(4):273–84.

    Article  CAS  Google Scholar 

  51. Ma Q, He X. Molecular basic of electrophilic and oxidative defense: promise and perils of Nrf2. Pharmacol Rev 2012;64(4):1055–81.

    Article  CAS  PubMed  Google Scholar 

  52. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012;32(4):687–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-independent mechanisms of regulation. Biochem Pharmacol 2013;85 (6):705–17.

    Article  CAS  PubMed  Google Scholar 

  54. Garg R, Gupta S, Maru GB. Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 2008;29(5):1022–32.

    Article  CAS  PubMed  Google Scholar 

  55. Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ. Curcumin attenuates dimethylnitrosamine induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 2008;46(4):1279–87.

    Article  CAS  PubMed  Google Scholar 

  56. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 2007;19(1):165–72.

    CAS  PubMed  Google Scholar 

  57. Wodrak GT, Cabell CM, Vileneuve NF, Zhang S, S Ley, Li Y, et al. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Med 2008;45(4):385–95.

    Article  CAS  Google Scholar 

  58. de Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes 2011;60(11):2683–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Becks L, Prince M, Burson H, Christophe C, Broadway M, Itoh K, et al. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer 2010;8(10):540, doi:https://doi.org/10.1186/1471-2407-10-540.

    Article  CAS  Google Scholar 

  60. Prince M, Li Y, Childers A, Itoh K, Yamamoto M, Kleiner HE. Comparison of citrus coumarins on carcinogen detoxifying enzymes in Nrf2 knockout mice. Toxicol Lett 2009;185(3):180–6.

    Article  CAS  PubMed  Google Scholar 

  61. Kaufmann KB, Al-Rifai N, Ulbrich F, Schallner N, Rücker H, Enzinger M, et al. The cytoprotective effects of E-α-(4-Methoxyphenyl)-2′,3,4,4′-tetramethoxychalcone (E-a-p-OMe-C6H4-TMC)-A novel and non-cytotoxic HO-1 inducer. PLoS One 2010;10:e0142932, doi:https://doi.org/10.1371/journal.pone.0142932.

    Article  CAS  Google Scholar 

  62. Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, et al. Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol 2005;18(8):1296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol In Vitro 2013;27(1):149–56.

    Article  PubMed  CAS  Google Scholar 

  64. Bodduluru LN, Kasala ER, Barua CC, Karnam KC, Dahiya V, Ellutla M. Antiproliferative and antioxidant potential of hesperetin against benzo(a) pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact 2015;242:345–52, doi:https://doi.org/10.1016/j.cbi.2015.10.020.

    Article  CAS  PubMed  Google Scholar 

  65. Zhai X, Lin M, Zhang F, Hu Y, Xu X, Li Y, et al. Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol Nutr Food Res 2013;57(2):249–59.

    Article  CAS  PubMed  Google Scholar 

  66. Krajka-Kuzniak V, Paluszczak J, Szaefer H, Baer-Dubowska W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr 2013;110(12):2138–49.

    Article  CAS  PubMed  Google Scholar 

  67. To C, Ringelberg CS, Royce DB, Williams CR, Risingsong R, Sporn MB, et al. Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate theNrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis. Carcinogenesis 2015;36(7):769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yates MS, Kwak MK, Egner PA, Groopman JD, Bodreddigari S, Sutter TR, et al. Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res 2006;66(4):2488–94.

    Article  CAS  PubMed  Google Scholar 

  69. Kavitha K, Thiyagarajan P, Rathna Nandhini J, Mishra R, Nagini S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie 2013;95(8):1629–39.

    Article  CAS  PubMed  Google Scholar 

  70. Yuan JH, Li YQ, Yang XY. Protective effects of epigallocatechin gallate on colon preneoplastic lesions induced by 2-amino-3-methylimidazo[4,5-f] quinoline in mice. Mol Med 2008;14(9–10):590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen C, Yu R, Owuor ED, Kong AN. Activation of antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 2000;2(6)605–123.

    Article  Google Scholar 

  72. Zhou F, Shen T, Duan T, Xu YY, Khor SC, Li J, et al. Antioxidant effects of lipophilic tea polyphenols on diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis in rats. In Vivo 2014;28(4):495–503.

    CAS  PubMed  Google Scholar 

  73. Shen T, Jiang T, Long M, Chen J, Ren DM, Wong PK, et al. A curcumin derivative that inhibits vinyl carbamate-induced lung carcinogenesis via activation of the Nrf2 protective response. Antioxid Redox Signal 2015;23(8):651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 2005;331(4):993–1000.

    Article  CAS  PubMed  Google Scholar 

  75. Krajka-Kuźniak V, Szaefer H, Stefanski T, Sobiak S, Cichocki M, Baer-Dubowska W. The effect of resveratrol and its methylthiocyanate-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell Mol Biol Lett 2014;19(3):500–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. de Oliveira MR, Ferreira GC, Schuck PF. Dal Bosco SM. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SHSY5Y neuroblastoma cells. Chem Biol Interact 2015;242:396–406.

    Article  PubMed  CAS  Google Scholar 

  77. Guo Q, Shen Z, Yu H, Lu G, Yu Y, Liu X, et al. Carnosic acid protects acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice. Korean J Physiol Pharmacol 2016;20(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  78. Moo-Puc R, Caamal-Fuentes E, Peraza-Sánchez SR, Slusarz A, Jackson G, Drenkhahn SK, et al. Antiproliferative and antiestrogenic activities of bonediol an alkyl catechol from bonellia macrocarpa. Biomed Res Int 2015;37:1578–90.

    Google Scholar 

  79. Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz(a)anthracene induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 2006;66(16):8293–6.

    Article  CAS  PubMed  Google Scholar 

  80. Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res 2014;7(3):319–29.

    Article  CAS  Google Scholar 

  81. Krajka-Kuźniak V, Paluszczak J, Szaefer H, Baer-Dubowska W. The activation of the Nrf2/ARE pathway in HepG2 hepatoma cells by phytochemicals and subsequent modulation of phase II and antioxidant enzyme expression. J Physiol Biochem 2015;71(2):227–38.

    Article  PubMed  CAS  Google Scholar 

  82. Yamamoto R, Shimamoto K, Ishii Y, Kimura M, Fujii Y, Morita R, et al. Involvement of PTEN/Akt signaling and oxidative stress on indole-3-carbinol (I3C)-induced hepatocarcinogenesis in rats. Exp Toxicol Pathol 2013;65 (6):845–52.

    Article  CAS  PubMed  Google Scholar 

  83. Szaefer H, Krajka-Kuzniak V, Licznerska B, Bartoszek A, Baer-Dubowska W. Cabbage juices and indoles modulate the expression profile of AhR, ERα, and Nrf2 in human breast cancer. Nutr Cancer 2015;67(8):1342–54.

    Article  PubMed  CAS  Google Scholar 

  84. Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, et al. Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 2006;66 (17):8804–13.

    Article  CAS  PubMed  Google Scholar 

  85. Li B, Kim S, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 2015;36(1):53–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gong P, Hu B. Cederbaum AI: Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. Arch Biochem Biophys 2004;432(2):252–60.

    Article  CAS  PubMed  Google Scholar 

  87. Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, et al. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 2004;37(10):1578–90.

    Article  CAS  PubMed  Google Scholar 

  88. Kalayarasan S, Sriram N, Sureshkumar A, Sudhandiran G. Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivative S-allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J Appl Toxicol 2008;28(7):908–19.

    Article  CAS  PubMed  Google Scholar 

  89. Kuo PC, Brown DA, Scofield BA, Yu IC, Chang FL, Wang PY, et al. 3H-1,2-dithiole-3-thione as a novel therapeutic agent for the treatment of experimental autoimmune encephalomyelitis. Brain Behav Immun 2016;21(16)30060–5, doi:https://doi.org/10.1016/j.bbi.2016.03.015pii:S0889-1591.

    Google Scholar 

  90. Massrieh W, Derjuga A, Blank V. Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 2006;8(1–2):53–9.

    Article  CAS  PubMed  Google Scholar 

  91. Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD. Activation of Nrf2 by arsenite and monomethylarsonous is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol 2008;230(3):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Spirt S, Eckers A, Wehrend C, Micoogullari M, Sies H, Stahl W, et al. Interplay between the chalcone cardamonin and selenium in the biosynthesis of Nrf2-regulated antioxidant enzymes in intestinal Caco-2 cells. Free Radic Biol Med 2016;91:164–71.

    Article  PubMed  CAS  Google Scholar 

  93. Liu M, Hu C, Xu Q, Chen L, Ma K, Xu N, et al. Methylseleninic acid activates Keap1/Nrf2 pathway via up-regulating miR-200a in human oesophageal squamous cell carcinoma cells. Biosci Rep 20154(5), doi:https://doi.org/10.1042/BSR20150092 35, pii: e00256.

  94. Sahin K, Orhan C, Tuzcu M, Sahin N, Ali S, Bahcecioglu IH, et al. Orally administered lycopene attenuates diethylnitrosamine induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways. Nutr Cancer 2014;66(4):590–8.

    Article  CAS  PubMed  Google Scholar 

  95. Lian F, Smith DE, Ernst H, Russell RM, Wang XD. Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis 2007;28(7):1567–74.

    Article  CAS  PubMed  Google Scholar 

  96. Habbib E, Linher-Melville K, Lin HX, Sinhg G. Expression of xCT and activity of system xc(-) are regulated by Nrf2 in human breast cancer cells in response to oxidative stress. Redox Biol 2015;5:33–42.

    Article  CAS  Google Scholar 

  97. Li CQ, Kim MY, Godoy LC, Thiantanawat A, Trudel LJ, Wogan GN. Nitric oxide activation of Keap1/Nrf2 signaling in human colon carcinoma cells. Proc Natl Acad Sci USA 2009;106(34):14547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Simmons SO, Fan CY, Yeoman K, Wakefield J, Ramabhadran R. NRF2 Oxidative stress induced by heavy metals is cell type dependent. Curr Chem Genomics 2011;5:1–12, doi:https://doi.org/10.2174/1875397301105010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hung Y, Li W, Su ZY, Kong AN. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015;26(12):1401–13.

    Article  CAS  Google Scholar 

  100. Hu L, Magesh S, Chen L, Wang L, Lewis TA, Chen Y, et al. Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction. Bioorg Med Chem Lett 2013;23(10):3039–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sato M, Aoki T, Inoue H, Tanaka T, Kunishima N, Inventors. Keap1 protein binding compound, crystal of complex between the same and Keap1 protein, and method for producing the same. Toray Ind Inc., assignee. Japanese Patent JP 2013-028575A. published 7 February 2013.

  102. Wells G. Peptide and small molecule inhibitors of the Keap1-Nrf2 protein -protein interaction. Biochem Soc Trans 2015;43(4):674–9.

    Article  CAS  PubMed  Google Scholar 

  103. Steel R, Cowan J, Payerne E, O’Connell MA, Searcey M. Anti- inflammatory effect of a cell-penetrating peptide targeting the Nrf2/Keap1 interaction. ACS Med Chem Lett 2012;3(5):407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Nat Acad Sci U S A 2011;108(4):1433–8.

    Article  CAS  Google Scholar 

  105. Coople I. The Keap1-Nrf2 cell defense pathway — a promising therapeutic target. Advan Pharmacol 2012;63:43–79.

    Article  CAS  Google Scholar 

  106. Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 2011;50(11):1599–609.

    Article  CAS  PubMed  Google Scholar 

  107. Ohnuma T, Matsumoto T, Itoi A, Kawana A, Nishiyama T, Ogura K, et al. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from cinnamomi cortex extract. Biochem Biophys Res Commun 2011;413(4):623–9.

    Article  CAS  PubMed  Google Scholar 

  108. Gao AM, Ke ZP, Wang JN, Yang JY, Chen SY, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013;34(8):1806–14.

    Article  CAS  PubMed  Google Scholar 

  109. Gao AM, Ke ZP, Shi F, Sun GC, Chen H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 2013;206(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  110. Liao JC, Lee KT, You BJ, Lee CL, Chang WT, Wu YC, et al. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr Res 2015;59:29884, doi:https://doi.org/10.3402/fnr.v59.29884.

    Article  PubMed  CAS  Google Scholar 

  111. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014;39(4):199–218.

    Article  CAS  PubMed  Google Scholar 

  112. Wang XJ, Hayes JD, Henderson CJ, Wolf CR. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci U S A 2007;104(49):19589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, et al. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 2013;271(2):229–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Baer-Dubowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajka-Kuźniak, V., Paluszczak, J. & Baer-Dubowska, W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol. Rep 69, 393–402 (2017). https://doi.org/10.1016/j.pharep.2016.12.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.12.011

Keywords