Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Plant–derived vaccine protects target animals against a viral disease

Abstract

The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleotides coding for a short linear epitope from the VP2 capsid protein of mink enteritis virus (MEV) into an infectious cDNA clone of cowpea mosaic virus and the successful expression of the epitope on the surface of CVPs when propagated in the black-eyed bean, Vigna unguiculata. The efficacy of the CVPs was established by the demonstration that one subcutaneous injection of 1 mg of the CVPs in mink conferred protection against clinical disease and virtually abolished shedding of virus after challenge with virulent MEV, demonstrating the potential utility of plant CVPs as the basis for vaccine development. The epitope used occurs in three different virus species—MEV, canine parvovirus, and feline panleukopenia virus—and thus the same vaccine could be used in three economically important viral hosts—mink, dogs, and cats, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meloen, R.H., Puijk, W.C., Langeveld, J.P.M., van Amerongen, A., and Schaaper, W.M.M. 1995. Pepscan to determine T and B cell epitopes. CRC Press, Boca Ranton, Florida.

    Google Scholar 

  2. Usha, R., Rohll, J.B., Spall, V.E., Shanks, M., Maule, A.J., Johnson, J.E. et al. 1993. Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197: 366–374.

    Article  CAS  Google Scholar 

  3. Porta, C., Spall, V.E., Loveland, J., Johnson, J.E., Barker, P.J., and Lomonosoff, G.P. 1994. Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology 202: 949–955.

    Article  CAS  Google Scholar 

  4. Turpen, T.H., Reinl, S.J., Charoenvit, Y., Hoffman, S.L., Fallarme, V., and Grill, L. 1995. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Bio/Technology 13: 53–57.

    CAS  PubMed  Google Scholar 

  5. Fitchen, J., Beachy, R.N., and Hein, M.B. 1995. Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine 13: 1051–1057.

    Article  CAS  Google Scholar 

  6. Stauffacher, C.V., Usha, R., Harrington, M., Schmidt, T., Hosur, M., and Johnson, J.E. 1987. The structure of cowpea mosaic virus at 3. 5Å resolution, pp. 293–308 in Crystallography in molecular biology. Moras, D., Drenth, J., Strandberg, B., Suck, D., and Wilson, K. (eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  7. Chen, Z., Stauffacher, C.V., and Johnson, J.E. 1990. Capsid structure and RNA packaging in comoviruses. Sem. Virol. 1: 453–466.

    Google Scholar 

  8. McLain, L., Porta, C., Lomonosoff, G.P., Durrani, Z., and Dimmock, N.J., 1995. Human immunodeficiency virus type 1 -neutralizing antibodies raised to a glyco-protein 41 peptide expressed on the surface of a plant virus. AIDS Res. Hum. Retroviruses 11: 327–334.

    Article  CAS  Google Scholar 

  9. McLain, L., Durrani, Z., Wisniewski, L.A., Porta, C., Lomonosoff, G.P., and Dimmock, N.J. 1996. Stimulation of neutralizing antibodies to human immunode-fiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus. Vaccine 14: 799–810.

    Article  CAS  Google Scholar 

  10. Parrish, C.R. 1994. The emergence and evolution of canine parvovirus—An example of recent host range mutation. Sem. Wol. 5: 121–132.

    Google Scholar 

  11. Cotmore, S.F. and Tattersall, P. 1987. The autonomously replicating parvoviruses afvertebrates. Adv. Virus Res. 33: 91–174.

    Article  CAS  Google Scholar 

  12. Paradiso, P.R. 1981. Infectious process of the parvovirus H-1: correlation of protein content, particle density and viral infectivity. J. Virol. 39: 800–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. López de Turiso, J.A., Cortés, E., Martinez, C., Ruiz de Ybánez, R., Simarro, I., Vela, C., et al. 1992. Recombinant vaccine for canine parvovirus in dogs. J. Virol. 66: 2748–2753.

    PubMed  PubMed Central  Google Scholar 

  14. Christensen, J., Alexandersen, S., Bloch, B., Aasted, B., and Uttenthal, A. 1994. Production of mink enteritis parvovirus empty capsids by expression in a baculo-virus vector system—a recombinant vaccine for mink enteritis parvovirus in mink. J. Gen. Virol. 75: 149–155.

    Article  CAS  Google Scholar 

  15. Pearson, R.C. and Gorham, J.R. 1987. Mink virus enteritis. pp. 349–360 in Virus infection of carnivores, virus infections of vertebrates. Appel, M.J. (ed.). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  16. Langeveld, J.P.M., Casal, J.I., Vela, C., Dalsgaard, K., Smale, S.H., Puijk, W.C., et al. 1993. B cell epitopes of canine parvovirus: distribution on the primary structure and exposure on the viral surface. J. Virol. 67: 765–772.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Casal, J.I., Langeveld, J.P.M., Cortes, E., Schaaper, W.W.M., Vandijk, E., Vela, C., et al. 1995. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J. Virol. 69: 7274–7277.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Langeveld, J.P.M., Casal, J.I., Osterhaus, A.D.M.E., Cortés, E., de Swart, R., Vela, C. et al. 1994. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J. Virol. 68: 4506–4513.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Langeveld, J.P.M., Kamstrup, S., Uttenthal, A., Strandbygaard, B., Vela, C., Dalsgaard, K. et al. 1995. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein. Vaccine 13: 1033–1037.

    Article  CAS  Google Scholar 

  20. van Kammen, A. and de Jager, C.P. 1978. Cowpea mosaic virus. Commonwealth Agricultural Bureaux.

  21. Dessens, J.T. and Lomonosoff, G.P. 1993. Cauliflower mosaic virus RNAs are infectious on plants. J. Gen. Virol. 74: 889–892.

    Article  CAS  Google Scholar 

  22. Semancik, J.S. 1996. Studies on electrophoretic heterogeneity in isometric plant viruses. virology 30: 698–704.

    Article  Google Scholar 

  23. López de Turiso, J.A., Cortés, E., Ranz, J., Garcia, J., Sanz, A., Vela, C., et al. 1991. Fine mapping of canine parvovirus B cell epitopes. J. Gen. Virol. 72: 2445–2456.

    Article  Google Scholar 

  24. Lin, T., Porta, C., Lomonosoff, G.P., and Johnson, J.E. 1996. Structure-based design of peptide presentation on a viral surface: the crystal structure of a plant/animal virus chimera at 2. 8Å resolution. Folding and Design 1: 179–187.

    Article  CAS  Google Scholar 

  25. Dalsgaard, K. 1974. Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Archiv für die Gesamte Virusforschung 44: 243–254.

    Article  CAS  Google Scholar 

  26. Uttenthal, A. 1988. Apparent lack of effect of vaccination against mink enteritis virus (MEV). A challenge study. Arch. Virol. 99: 153–161.

    Article  CAS  Google Scholar 

  27. Mengeling, W.L., Brown, T.T., Paul, P.S., and Gutekunst, D.E. 1979. Efficacy of an inactivated virus vaccine for prevention of porcine parvovirus-induced reproductive failure. Am. J. Veterinary Res. 40: 204–207.

    CAS  Google Scholar 

  28. Mason, H.S., Ball, J.M., Shi, J.J., Jiang, X., Estes, M.K., and Amtzen, C.J. 1996. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 93: 5335–5340.

    Article  CAS  Google Scholar 

  29. Inoue, H., Nojima, H., and Okayama, H. 1990. High-efficiency transformation of Escherichia coli with plasmids. Gene 96: 23–28.

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning—a laboratory manual, ed 2. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  31. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  32. Langeveld, J.P.M., Casal, J.I., Cortés, E., van de Wetering, G., Boshuizen, R.S., Schaaper, W.M.M., et al. 1994. Effective induction of neutralizing antibodies with the amino terminus of VP2 of canine parvovirus as a synthetic peptide. Vaccine 12: 1473–1480.

    Article  CAS  Google Scholar 

  33. Sorensen, K.J., Askaa, J., and Dalsgaard, K. 1980. Assay for antibody in pig fetuses infected with porcine parvovirus. Acta Veterinaria Scandinavica 21: 312–317.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalsgaard, K., Uttenthal, Å., Jones, T. et al. Plant–derived vaccine protects target animals against a viral disease. Nat Biotechnol 15, 248–252 (1997). https://doi.org/10.1038/nbt0397-248

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt0397-248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing