Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Process or perish: quality control in mRNA biogenesis

Abstract

Production of mature mRNAs that encode functional proteins consists of a highly complex pathway of synthesis, processing and export. Along this pathway, the mRNA transcript is scrutinized by quality control machinery at numerous steps. Such extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of mRNA biogenesis and quality control.
Figure 2: Models for Mlp/Tpr protein function in mRNA quality control at the nuclear pore.
Figure 3: Models for NMD pathway in higher eukaryotes and nonstop decay pathway in yeast.

Similar content being viewed by others

References

  1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Culbertson, M.R. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15, 74–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hentze, M.W. & Kulozik, A.E. A perfect message: RNA surveillance and nonsense-mediated dacay. Cell 96, 307–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Frischmeyer, P.A. & Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Baker, K.E. & Parker, R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hilleren, P. & Parker, R. Mechanisms of mRNA surveillance in eukaryotes. Annu. Rev. Genet. 33, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. van Leeuwen, F.W., Burbach, P.H. & Hol, E.M. Mutations in RNA: a first example of molecular misreading in Alzheimer's disease. Trends Neurosci. 21, 331–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. van Leeuwen, F.W. et al. Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol. Aging 21, 879–891 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Vasudevan, S. & Peltz, S.W. Nuclear mRNA surveillance. Curr. Opin. Cell Biol. 15, 332–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Schell, T., Kulozik, A.E. & Hentze, M.W. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, REVIEWS1006 (2002).

  11. Moore, M.J. Nuclear RNA turnover. Cell 108, 431–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Baserga, S.J. & Benz, E.J. Jr. β-globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability. Proc. Natl. Acad. Sci. USA 89, 2935–2939 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dietz, H.C. & Pyeritz, R.E. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum. Mol. Genet. 4, 1799–1809 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Das, B., Butler, S. & Sherman, F. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 5502–5515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez, C.I., Bhattacharya, A., Wang, W. & Peltz, S.W. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274, 15–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Maquat, L.E. Skiing toward nonstop mRNA decay. Science 295, 2221–2222 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Vasudevan, S., Peltz, S.W. & Wilusz, J. Non-stop decay—a new mRNA surveillance pathway. Bioessays 24, 785–788 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Green, D.M., Johnson, C.P., Hagan, H. & Corbett, A.H. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl. Acad. Sci. USA 100, 1010–1015 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casolari, J.M. & Silver, P.A. Guardian at the gate: preventing unspliced pre-mRNA export. Trends Cell Biol. 14, 222–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Suntharalingam, M. & Wente, S.R. Peering through the pore. Nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kornberg, R.D. The eukaryotic gene transcription machinery. Biol. Chem. 382, 1103–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Neugebauer, K.M. On the importance of being co-transcriptional. J. Cell Sci. 115, 3865–3871 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Zorio, D.A. & Bentley, D.L. The link between mRNA processing and transcription: communication works both ways. Exp. Cell Res. 296, 91–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Jensen, T.H., Dower, K., Libri, D. & Rosbash, M. Early formation of mRNP: license for export or quality control? Mol. Cell 11, 1129–1138 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Dimaano, C. & Ullman, K.S. Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore. Mol. Cell. Biol. 24, 3069–3076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Nover, L., Scharf, K.D. & Neumann, D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3, 1648–1655 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kedersha, N., Gupta, M., Li, M., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beelman, C.A. & Parker, R. Degradation of mRNA in eukaryotes. Cell 81, 179–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Job, C. & Eberwine, J. Localization and translation of mRNA in dendrites and axons. Nat. Rev. Neurosci. 2, 889–898 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Butler, J.S. The yin and yang of the exosome. Trends Cell Biol. 12, 90–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Hoof, A. & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thomsen, R., Libri, D., Boulay, J., Rosbash, M. & Jensen, T.H. Localization of nuclear retained mRNAs in Saccharomyces cerevisiae. RNA 9, 1049–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Briggs, M.W., Burkard, K.T. & Butler, J.S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255–13263 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Burkard, K.T. & Butler, J.S. A nuclear 3′→5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p. Mol. Cell. Biol. 20, 604–616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T.H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Zenklusen, D., Vinciguerra, P., Wyss, J.C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell. Biol. 22, 8241–8253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrulis, E.D. et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837–841 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Izaurralde, E. Friedrich Miescher Prize awardee lecture review. A conserved family of nuclear export receptors mediates the exit of messenger RNA to the cytoplasm. Cell. Mol. Life Sci. 58, 1105–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Lei, E.P. et al. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell 14, 836–847 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Sommer, P. & Nehrbass, U. Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. Curr. Opin. Cell Biol. 17, 1–8 (2005).

    Article  CAS  Google Scholar 

  53. Saguez, C., Olesen, J.R. & Jensen, T.H. Formation of export-competent mRNP: escaping nuclear destruction. Curr. Opin. Cell Biol. 17, 1–7 (2005).

    Article  CAS  Google Scholar 

  54. Darzacq, X., Singer, R.H. & Yaron, S-T. Dynamics of transcription and mRNA export. Curr. Opin. Cell Biol. 17, 1–8 (2005).

    Article  CAS  Google Scholar 

  55. Kolling, R., Nguyen, T., Chen, E.Y. & Botstein, D. A new yeast gene with a myosin-like heptad repeat structure. Mol. Gen. Genet. 237, 359–369 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Strambio-de-Castillia, C., Blobel, G. & Rout, M.P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cordes, V.C., Reidenbach, S., Rackwitz, H.R. & Franke, W.W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zimowska, G., Aris, J.P. & Paddy, M.R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci. 110, 927–944 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Kosova, B. et al. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with Nic96p. J. Biol. Chem. 275, 343–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Bangs, P. et al. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J. Cell Biol. 143, 1801–1812 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berglund, J.A., Abovich, N. & Rosbash, M. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 12, 858–867 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Lejeune, F. & Maquat, L.E. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr. Opin. Cell Biol. 17, 1–7 (2005).

    Article  CAS  Google Scholar 

  64. Leeds, P., Wood, J.M., Lee, B.S. & Culbertson, M.R. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 2165–2177 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Maquat, L.E. Nonsense-mediated mRNA decay: a comparative analysis of different species. Curr. Genomics 5, 175–190 (2004).

    Article  CAS  Google Scholar 

  66. Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301–313 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7, 5–15 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77–87 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Fukuhara, N. et al. SMG7 is a 14–3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 17, 537–547 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Mitrovich, Q.M. & Anderson, P. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev. 14, 2173–2184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muhlrad, D. & Parker, R. Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5, 1299–1307 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruiz-Echevarria, M.J. & Peltz, S.W. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101, 741–751 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Welch, E.M. & Jacobson, A. An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. EMBO J. 18, 6134–6145 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, Y.K., Furic, L., DesGroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Maderazo, A.B., Belk, J.P., He, F. & Jacobson, A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol. Cell. Biol. 23, 842–851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cao, D. & Parker, R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113, 533–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hagan, K.W., Ruiz-Echevarria, M.J., Quan, Y. & Peltz, S.W. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol. Cell. Biol. 15, 809–823 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Mitchell, P. & Tollervey, D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol. Cell 11, 1405–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Domeier, M.E. et al. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 289, 1928–1931 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Maquat, L.E. & Li, X. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. RNA 7, 445–456 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 1–7 (2005).

    Article  CAS  Google Scholar 

  90. Gonzalez, C.I., Ruiz-Echevarria, M.J., Vasudevan, S., Henry, M.F. & Peltz, S.W. The yeast hnRNP-like protein Hrp1/Nab4 marks a transcript for nonsense-mediated mRNA decay. Mol. Cell 5, 489–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Kessler, M.M. et al. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev. 11, 2545–2556 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16, 2778–2791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Kuperwasser, N., Brogna, S., Dower, K. & Rosbash, M. Nonsense-mediated decay does not occur within the yeast nucleus. RNA 10, 1907–1915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dahlberg, J.E. & Lund, E. Does protein synthesis occur in the nucleus? Curr. Opin. Cell Biol. 16, 335–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Dahlberg, J.E., Lund, E. & Goodwin, E.B. Nuclear translation: what is the evidence? RNA 9, 1–8 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frischmeyer, P.A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kadaba, S. et al. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev. 18, 1227–1240 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuai, L., Fang, F., Butler, J.S. & Sherman, F. Polyadenylation of rRNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 8581–8586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wickens, M. & Goldstrohm, A. Molecular biology. A place to die, a place to sleep. Science 300, 753–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Mendell, J.T., ap Rhys, C.M. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shirley, R.L., Ford, A.S., Richards, M.R., Albertini, M. & Culbertson, M.R. Nuclear import of Upf3p is mediated by importin-α/-β and export to the cytoplasm is required for a functional nonsense-mediated mRNA decay pathway in yeast. Genetics 161, 1465–1482 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brumbaugh, K.M. et al. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14, 585–598 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Corbett Laboratory, particularly M. Harreman and S. Kelly for their feedback and comments on the manuscript. We also thank S. Butler and L. Maquat for their willingness to provide information and answer questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita H Corbett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasken, M., Corbett, A. Process or perish: quality control in mRNA biogenesis. Nat Struct Mol Biol 12, 482–488 (2005). https://doi.org/10.1038/nsmb945

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing