Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

mRNA quality control pathways in Saccharomyces cerevisiae

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Efficient production of translation-competent mRNAs involves processing and modification events both in the nucleus and cytoplasm which require a number of complex machineries at both co-transcriptional and post-transcriptional levels. Mutations in the genomic sequence sometimes result in the formation of mutant non-functional defective messages. In addition, the enormous amounts of complexities involved in the biogenesis of mRNPs in the nucleus very often leads to the formation of aberrant and faulty messages along with their functional counterpart. Subsequent translation of these mutant and defective populations of messenger RNAs could possibly result in the unfaithful transmission of genetic information and thus is considered a threat to the survival of the cell. To prevent this possibility, mRNA quality control systems have evolved both in the nucleus and cytoplasm in eukaryotes to scrutinize various stages of mRNP biogenesis and translation. In this review, we will focus on the physiological role of some of these mRNA quality control systems in the simplest model eukaryote Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CBC:

cap-binding complex

DRN:

decay of mRNA in the nucleus

NGD:

no-go delay

NMD:

nonsense-mediated decay

NPC:

nuclear pore complex

NSD:

non-stop decay

PTC:

premature termination codon

References

  • Aguilera A 2005 Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr. Opin. Cell Biol. 7 242–250

    Article  CAS  Google Scholar 

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E and Tollervey D 1999 Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18 5399–5410

    Article  PubMed  CAS  Google Scholar 

  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S and Jacobson A 2004 A faux 3'-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432 112–118

    Article  PubMed  CAS  Google Scholar 

  • Anderson JS and Parker RR 1998 The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17 1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S and Katada T 2001 Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J. 20 4684–4693

    Article  PubMed  CAS  Google Scholar 

  • Assenholt J, Mouaikel J, Andersen KR, Brodersen DE, Libri D and Jensen TH 2008 Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. RNA 14 2305–2313

    Article  PubMed  CAS  Google Scholar 

  • Back SH and Kaufman RJ 2012 Endoplasmic Reticulum Stress and Type 2 Diabetes Annu. Rev. Biochem. 81 767–793

    Article  PubMed  CAS  Google Scholar 

  • Baker KE and Parker R 2004 Nonsense-mediated mRNA decay: Terminating erroneous gene expression. Curr. Opin. Cell Biol. 16 293–299

    Article  PubMed  CAS  Google Scholar 

  • Bangs P, Burke B, Powers C, Craig R, Purohit A and Doxsey S 1998 Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J. Cell Biol. 143 1801–1812

    Article  PubMed  CAS  Google Scholar 

  • Beelman CA and Parker R 1994 Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J. Biol. Chem. 269 9687–9692

    PubMed  CAS  Google Scholar 

  • Belew AT, Advani VM and Dinman JD 2011 Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res. 39 2799–2808

    Article  PubMed  CAS  Google Scholar 

  • Belgrader P, Cheng J, Zhou X, Stephenson LS and Maquat LE 1994 Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life. Mol. Cell. Biol. 14 8219–8228

    Article  PubMed  CAS  Google Scholar 

  • Bellofatto V and Wilusz J 2011 Transcription and mRNA stability: Parental guidance suggested. Cell 147 1438–1439

    Article  PubMed  CAS  Google Scholar 

  • Bentley DL 2005 Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors Curr. Opin. Cell Biol. 17 251–256

    Article  PubMed  CAS  Google Scholar 

  • Bird G, Fong N, Gatlin JC, Farabaugh S and Bentley DL 2005 Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol. Cell 20 747–758

    Article  PubMed  CAS  Google Scholar 

  • Birse CE, Minvielle-Sebastia L, Lee BA, Keller W and Proudfoot NJ 1998 Coupling termination of transcription to messenger RNA maturation in yeast. Science 280 298–301

    Article  PubMed  CAS  Google Scholar 

  • Boeck R, Tarun SZ, Rieger M, Deardorff JA, Muller-Auer S and Sachs AB 1996 The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271 432–438

    Article  PubMed  CAS  Google Scholar 

  • Bonneau F, Basquin J, Ebert J, Lorentzen E and Conti E 2009 The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation Cell 139 547–559

    Article  PubMed  CAS  Google Scholar 

  • Bousquet-Antonelli C, Presutti C, and Tollervy D 2000 Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102 765–775

    Article  PubMed  CAS  Google Scholar 

  • Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A and Choder M 2011 Promoter elements regulate cytoplasmic mRNA decay. Cell 147 1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Briggs MW, Burkard KT and Butler JS 1998 Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation. J. Biol. Chem. 273 13255–13263

    Article  PubMed  CAS  Google Scholar 

  • Brown CE and Sachs AB 1998 Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol. Cell. Biol. 18 6548–6559

    PubMed  CAS  Google Scholar 

  • Brown CE, Tarun SZ, Boeck R and Sachs AB 1996 PAN3 encodes a subunit of the Pab1p-dependent poly (A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 16 5744–5753

    PubMed  CAS  Google Scholar 

  • Brown JT, Bai X and Johnson AW 2000 The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6 449–457

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S 2009 Progression through the RNA polymerase II CTD cycle. Mol. Cell 36 541–546

    Article  PubMed  CAS  Google Scholar 

  • Burkard KT and Butler JS 2000 A nuclear 3'-5' exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol. Cell. Biol. 20 604–616

    Article  PubMed  CAS  Google Scholar 

  • Butler JS 2002 The yin and yang of the exosome. Trends Cell Biol. 12 90–96

    Article  PubMed  CAS  Google Scholar 

  • Butler JS and Mitchell P 2011 Rrp6, Rrp47 and cofactors of the nuclear exosome. Adv. Exp. Med. Biol. 702 91–104

    Article  PubMed  Google Scholar 

  • Cao D and Parker R 2003 Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113 533–545

    Article  PubMed  CAS  Google Scholar 

  • Caponigro G and Parker R 1996 Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60 233–249

    PubMed  CAS  Google Scholar 

  • Carter MS, Doskow J, Morris P, Li S, Nhim RP, Sandstedt S and Wilkinson MF 1995 A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J Biol. Chem. 270 28995–29003

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H and Conti E 2011 Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol. Cell 41 693–703

    Article  PubMed  CAS  Google Scholar 

  • Chattoo BB, Palmer E, Ono B and Sherman F 1979 Patterns of Genetic and Phenotypic Suppression of lys2 Mutations in the Yeast Saccharomyces cerevisiae. Genetics 93 67–79

    PubMed  CAS  Google Scholar 

  • Chen JY, Chiang C and Denis CL 2002 CCR4, a 3′→5′ poly (A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21 1414–1426

    Article  PubMed  CAS  Google Scholar 

  • Chlebowski A, Lubas M, Jensen TH and Dziembowski A 2013 RNA decay machines: The exosome. Biochim Biophys Acta. 1829 552–560

  • Conrad NK, Wilson SM, Steinmetz EJ, Patturajan M, Brow DA, Swanson MS and Corden JL 2000 A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 154 557–571

    PubMed  CAS  Google Scholar 

  • Cooke C and Alwine JC 1996 The cap and the 3' splice site similarly affect polyadenylation efficiency. Mol. Cell Biol. 16 2579–2584

    PubMed  CAS  Google Scholar 

  • Christodero M, Bottcher B, Diepholz M, Scheffzek K and Clayton C 2008 The Leishmania tarentolae exosome: Purification and structural analysis by electron microscopy. Mol Biochem Parasitol. 159 24–29

    Article  CAS  Google Scholar 

  • Cui Y and Denis CL 2003 In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol. Cell Biol. 23 7887–7901

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Gonzalez CI, Kinzy TG, Dinman JD and Peltz SW 1999 Mutations in the MOF2/SUI1 gene affect both translation and nonsense mediated mRNA decay. RNA 5 794–804

    Article  PubMed  CAS  Google Scholar 

  • Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD and Peltz SW 1998 The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12 1665–1677

    Article  PubMed  CAS  Google Scholar 

  • Das B, Butler JS and Sherman F 2003 Degradation of normal mRNA in the nucleus of yeast. Mol. Cell. Biol. 23 5502–5515

    Article  PubMed  CAS  Google Scholar 

  • Das B, Das S and Sherman F 2006 Mutant lys2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103 10871–10876

    Article  PubMed  CAS  Google Scholar 

  • Das B, Guo Z, Russo P, Chartrand P and Sherman F 2000 The Role of Nuclear Cap Binding Protein Cbc1p of Yeast in mRNA Termination and Degradation Mol. Cell Biol. 20 2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Daugeron MC, Mauxion F and Seraphin B 2001 The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29 2448–2455

    Article  PubMed  CAS  Google Scholar 

  • Davis CA and Ares M Jr 2006 Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 103 3262–3267

    Article  PubMed  CAS  Google Scholar 

  • Decker CJ and Parker R 1993 A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7 1632–1643

    Article  PubMed  CAS  Google Scholar 

  • Deliz-Aguirre R, Atkin AL and Kebaara BW 2011 Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Curr. Genet. 57 421–430

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E and Gross JD 2008 mRNA decapping is promoted by an RNA binding channel in Dcp2. Mol. Cell 29 324–336

    Article  PubMed  CAS  Google Scholar 

  • Dimaano C and Ullman KS 2004 Nucleocytoplasmic transport: Integrating mRNA production and turnover with export through nuclear pore. Mol. Cell Biol. 24 3069–3076

    Article  PubMed  CAS  Google Scholar 

  • Doma M and Parker R 2007 RNA quality control in eukaryotes. Cell 131 660–668

    Article  PubMed  CAS  Google Scholar 

  • Doma MK and Parker R 2006 Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440 561–564

    Article  PubMed  CAS  Google Scholar 

  • Dori-Bachash M, Shalem O, Manor YS, Pilpel Y and Tirosh I 2012 Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biol. 13 R114

    Article  PubMed  Google Scholar 

  • Dori-Bachash M, Shema E and Tirosh I 2011 Coupled evolution of transcription and mRNA degradation. PLoS Biol. 9 e1001106

    Article  PubMed  CAS  Google Scholar 

  • Dower K, Kuperwasser N, Merrikh H and Rosbash M 2004 A synthetic A tail rescues yeast nuclear accumulation of a ribozyme terminated transcript. RNA 10 1888–1899

    Article  PubMed  CAS  Google Scholar 

  • Eckner R, Ellmeier W and Birnstiel ML 1991 Mature mRNA 3' end formation stimulates RNA export from the nucleus. EMBO J. 10 3513–3522

    PubMed  CAS  Google Scholar 

  • Edery I and Sonenberg N 1985 Cap-dependent RNA splicing in a HeLa nuclear extract. Proc. Natl. Acad. Sci. USA 82 7590–7594

    Article  PubMed  CAS  Google Scholar 

  • Edwalds-Gilbert G, Veraldi KL and Milcarek C 1997 Alternative poly(A) site selection in complex transcription units: Means to an end? Nucleic Acids Res. 25 2547–2561

    Article  PubMed  CAS  Google Scholar 

  • Enssle J, Kugler W, Hentze MW and Kulozik AE 1993 Determination of mRNA fate by different RNA polymerase II promoters. Proc. Natl. Acad. Sci. USA 90 10091–10095

    Article  PubMed  CAS  Google Scholar 

  • Fasken BM and Corbett HA 2005 Process or perish: quality control in mRNA biogenesis. Nat. Struc. Mol. Biol. 12 482–488

    Article  CAS  Google Scholar 

  • Frischmeyer PA, van Hoof A, O'Donnell K, Guerrerio AL, Parker R and Dietz HC 2002 An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295 2258–2261

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, LaFiandra A and Shatkin AJ 1977 5'-Terminal structure and mRNA stability. Nature 266 235–239

    Article  PubMed  CAS  Google Scholar 

  • Gaba A, Jacobson A and Sachs MS 2005 Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Mol. Cell 20 449–460

    Article  PubMed  CAS  Google Scholar 

  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A and Nehrbass U 2004 Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116 63–73

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Das B, Sherman F and Maquat LE 2005 Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA 102 4258–4263

    Article  PubMed  CAS  Google Scholar 

  • Graber JH, Cantor CR, Mohr SC and Smith TF 1999 Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res. 27 888–894

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Johnson CP, Hagan H and Corbett AH 2003 The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl. Acad. Sci. USA 100 1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Gudipati RK, Xu Z, Lebreton A, Seraphin B, Steinmetz LM, Jacquier A and Libri D 2012 Extensive degradation of RNA precursors by the exosome in wild-type cells, Mol. Cell 48 409–421

    CAS  Google Scholar 

  • Hamm J and Mattaj IW 1990 Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63 109–118

    Article  PubMed  CAS  Google Scholar 

  • Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L and Choder M 2010 RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 143 552–563

    Article  PubMed  CAS  Google Scholar 

  • He F and Jacobson A 1995 Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev. 9 437–454

    Article  PubMed  CAS  Google Scholar 

  • He F, Li X, Spatrick P, Casillo R, Dong S and Jacobson A 2003 Genome-Wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell 12 1439–1452

    Article  PubMed  CAS  Google Scholar 

  • He F, Peltz SW, Donahue JL, Rosbash M and Jacobson A 1993 Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant. Proc. Natl. Acad. Sci. USA 90 7034–7038

    Article  PubMed  CAS  Google Scholar 

  • He F and Jacobson A 2001 Upf1p, Nmd2p, and Upf3p regulate the decapping and exonucleolytic degradation of both nonsense-containing mRNAs and wild-type mRNAs. Mol. Cell Biol. 21 1515–1530

    Article  PubMed  CAS  Google Scholar 

  • Herrick D, Parker R and Jacobson A 1990 Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae Mol. Cell Biol. 10 2269–2284

    CAS  Google Scholar 

  • Hilleren P and Parker R 1999 Mechanisms of mRNA surveillance in eukaryotes. Annu. Rev. Genet. 33 229–260

    Article  PubMed  CAS  Google Scholar 

  • Hilleren P, McCarthy T, Rosbash M, Parker R and Jensen TH 2001 Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413 538–542

    Article  PubMed  CAS  Google Scholar 

  • Hilleren PJ and Parker R 2003 Cytoplasmic degradation of splice-defective pre-mRNAs and intermediates. Mol. Cell 12 1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Houseley J and Tollervey D 2006 Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep. 7 205–211

    Article  PubMed  CAS  Google Scholar 

  • Houseley J, Lacava J and Tollervey D 2006 RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7 529–539

    Article  PubMed  CAS  Google Scholar 

  • Houseley J and Tollervey D 2009 The many pathways of RNA degradation. Cell 136 763–776

    Article  PubMed  CAS  Google Scholar 

  • Huang Y and Carmichael GG 1996 Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol. Cell Biol. 16 1534–1542

    PubMed  CAS  Google Scholar 

  • Ishigaki Y, Li X, Serin G and Maquat LE 2001 Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106 607–617

    Article  PubMed  CAS  Google Scholar 

  • Isken O and Maquat LE 2007 Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Nat. Rev. Genet. 9 699–712

    Article  CAS  Google Scholar 

  • Izaurralde E, Lewis J, McGuigan C, Jankowska C, Darzynkiewicz E and Mattaj IW 1994 A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78 657–668

    Article  PubMed  CAS  Google Scholar 

  • Izaurralde E, Stepinski J, Darzynkiewicz E and Mattaj IW 1992 A cap binding protein that may mediate nuclear export of RNA polymerase II transcribed RNAs. J. Cell Biol. 18 1287–1295

    Article  Google Scholar 

  • Jarmolowski A , Boelens WC , Izaurralde E and Mattaj IW 1994 Nuclear export of different classes of RNA is mediated by specific factors. J. Cell Biol. 124 627–635

    Article  PubMed  CAS  Google Scholar 

  • Jensen TH, Dower K, Libri D and Roshbash M 2003 Early formation of mRNP: license for export or quality control? Mol. Cell 11 1129–1138

    CAS  Google Scholar 

  • Jensen TH, Patricio K, McCarthy T and Rosbash M 2001 A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol. Cell 7 887–898

    CAS  Google Scholar 

  • Jiao X, Xiang S, Oh S, Martin CE, Tong L and Kiledjian M 2010 Identification of a quality-control mechanism for mRNA 5′-end capping. Nature 467 608–611

    Article  PubMed  CAS  Google Scholar 

  • Johnson AW 1997 Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell Biol. 17 6122–6130

    PubMed  CAS  Google Scholar 

  • Kebaara BW and Atkin AL. 2009 Long 3'-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res. 37 2771–2778

    Article  PubMed  CAS  Google Scholar 

  • Kedersha N, Gupta M, Li M, Miller I and Anderson P 1999 RNA binding protein TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of the mammalian stress granules. J. Cell Biol. 147 1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF and Buratowski S 2004 The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432 517–522

    Article  PubMed  CAS  Google Scholar 

  • Klauer A and van Hoof A 2013 Genetic interactions suggest multiple distinct roles of the arch and core helicase domains of Mtr4 in Rrp6 and exosome function Nucleic Acids Res. 41 533–541

    Article  PubMed  CAS  Google Scholar 

  • Kohler A and Hurt E 2007 Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8 761–773

    Article  PubMed  CAS  Google Scholar 

  • Konarska MM, Padgett RA and Sharp PA 1984 Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38 731–736

    Article  PubMed  CAS  Google Scholar 

  • Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U and Hurt E 2000 Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J. Biol. Chem. 275 343–350

    Article  PubMed  CAS  Google Scholar 

  • Krainer AR , Maniatis T , Ruskin B and Green MR 1984 Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36 993–1005

    Article  PubMed  CAS  Google Scholar 

  • Kuai L, Das B and Sherman F 2005 A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 102 13962–13967

    Article  PubMed  CAS  Google Scholar 

  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A and Tollervey D 2005 RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121 713–724

    Article  PubMed  CAS  Google Scholar 

  • Le Hir H, Gatfield D, Izaurralde E and Moore MJ 2001 The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense mediated mRNA decay. EMBO J. 20 4987–4997

    Article  PubMed  Google Scholar 

  • Leeds P, Peltz SW, Jacobson A and Culbertson MR 1991 The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5 2303–2314

    Article  PubMed  CAS  Google Scholar 

  • Legrain P and Rosbash M 1989 Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57 573–583

    Article  PubMed  CAS  Google Scholar 

  • Lelivelt MJ and Culbertson MR 1999 Yeast Upf Proteins Required for RNA Surveillance Affect Global Expression of the Yeast Transcriptome. Mol. Cell Biol. 19 6710–6719

    PubMed  CAS  Google Scholar 

  • Libri D, Dower K, Boulay J, Thomsen R, Rosbash M and Jensen TH 2002 Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell Biol. 22 8254–8266

    Article  PubMed  CAS  Google Scholar 

  • Lim SK and Maquat LE 1992 Human β-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5′-termini. EMBO J. 11 3271–3278

    PubMed  CAS  Google Scholar 

  • Liu Q, Greimann JC and Lima CD 2006 Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127 1223–1237

    Article  PubMed  CAS  Google Scholar 

  • Lorentzen E, Basquin J and Conti E 2008 Structural organization of the RNA-degrading exosome. Curr. Opin. Struct. Biol. 18 709–713

    Article  PubMed  CAS  Google Scholar 

  • Losson R and Lacroute F 1979 Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76 5134–5137

    Article  PubMed  CAS  Google Scholar 

  • Lotan R, Bar-On VG, Harel-Sharvit L, Duek L, Melamed D and Choder M 2005 The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev. 19 3004–3016

    Article  PubMed  CAS  Google Scholar 

  • Lotan R, Goler-Baron V, Duek L, Haimovich G and Choder M 2007 The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. J. Cell Biol. 178 1133–1143

    Google Scholar 

  • Luna R, Gaillard H, Gonzalez-Aguilera C and Aguilera A 2008 Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117 319–331

    Article  PubMed  CAS  Google Scholar 

  • Lykke-Andersen S, Brodersen DE and Jensen TH 2009 Origins and activities of the eukaryotic exosome. J. Cell Sci. 122 1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Lykke-Andersen S, Tomecki R, Jensen TH and Dziembowski A 2011 The Eukaryotic RNA exosome. RNA Biol. 8 61–66

    Article  PubMed  CAS  Google Scholar 

  • Malys N, Carroll K, Miyan J, Tollervey D and McCarthy J 2004 The ‘scavenger’ m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res. 32 3590–3600

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T and Reed R 2002 An extensive network of coupling among gene expression machines. Nature 416 499–506

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE 2002 Molecular biology: Skiing toward nonstop mRNA decay. Science 295 2221–2222

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE, Kinniburgh AJ, Rachmilewitz EA and Ross J 1981 Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell 27 543–553

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE, Hwang J, Sato H and Tang Y 2010 CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol.75 127–134

    Article  PubMed  CAS  Google Scholar 

  • Matus S, Glimcher LH and Hetz CJ 2011 Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23 239–252

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JE 1998 Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62 1492–1553

    PubMed  CAS  Google Scholar 

  • Merksamer PI and Papa FR 2010 The UPR and cell fate at a glance. J. Cell Sci. 123 1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A and Tollervey D 2008 A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol. Cell Biol. 28 5446–5457

    Article  PubMed  CAS  Google Scholar 

  • Minvielle-Sebastia L and Keller W 1999 mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr. Opin. Cell Biol. 11 352–357

    Article  PubMed  CAS  Google Scholar 

  • Minvielle-Sebastia L, Preker PJ and Keller W 1994 RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3'-end processing factor. Science 266 1702–1705

    Article  PubMed  CAS  Google Scholar 

  • Minvielle-Sebastia L, Winsor B, Bonneaud N and Lacroute F 1991 Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell Biol. 11 3075–3087

    PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M and Tollervey D 1997 The Exosome: A conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribo-nucleases. Cell 91 457–466

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PE, Petfalski R, Houalla A, Podtelejnikov M, Mann M and Tollervey D 2003 Rrp47p is an exosome-associated protein required for the 3′processing of stable RNAs. Mol. Cell Biol. 23 6982–6992

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P and Tollervey D 2003 An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation. Mol. Cell 11 1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Muhlrad D and Parker R 1994 Premature translational termination triggers mRNA decapping. Nature 370 578–581

    Article  PubMed  CAS  Google Scholar 

  • Muhlrad D and Parker R 1999 Aberrant mRNAs with extended 3′-UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5 1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Neil H, Malabat C, Aubenton-Carafa YD, Xu Z, Steinmetz LM and Jacquier A2009 Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457 1038–1042

  • Neugebauer KM 2002 On the importance of being co-transcriptional. J Cell Sci. 115 3865–3871

    Article  PubMed  CAS  Google Scholar 

  • Novar L, Scharf KD and Neumann D 1983 Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell Biol. 3 1648–1655

    Google Scholar 

  • Ohno M , Sakamoto H and Shimura Y 1987 Preferential excision of the 5' proximal intron from mRNA precursors with two introns as mediated by the cap structure. Proc. Natl. Acad. Sci. USA 84 5187–5191

    Article  PubMed  CAS  Google Scholar 

  • Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, Remme J and Falnes PO 2004. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol. Cell 16 107–116

    Article  PubMed  CAS  Google Scholar 

  • Panse VG Küster B Gerstberger T and Hurt E 2003 Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol. 5 21–27

    Article  PubMed  CAS  Google Scholar 

  • Parker R 2012 RNA Degradation in Saccharomyces cerevisiae Genetics 191 671–702

    Article  PubMed  CAS  Google Scholar 

  • Peltz SW, Brown AH and Jacobson A 1993 mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7 1737–1754

    Article  PubMed  CAS  Google Scholar 

  • Plumpton M, McGarvey M and Beggs JD 1994 A dominant negative mutation in the conserved RNA helicase motif 'SAT' causes splicing factor PRP2 to stall in spliceosomes. EMBO J. 13 879–887

    PubMed  CAS  Google Scholar 

  • Poole TL and Stevens A 1995 Comparison of features of the RNase activity of 5′-exonuclease -1 and 5′-exonuclease-2 of Saccharomyces cerevisiae. Nucleic Acids Symp. Ser. 79–81

  • Proudfoot N 2000 Connecting transcription to messenger RNA processing. Trends Biochem. Sci. 25 290–293

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot NJ, Furger A and Dye MJ 2002 Integrating mRNA processing with transcription. Cell 108 501–512

    Article  PubMed  CAS  Google Scholar 

  • Proweller A and Butler JS 1994 Efficient translation of poly(A) deficient mRNAs in Saccharomyces cerevisiae. Genes Dev. 8 2629–2640

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Lykke-Andersen S, Nasser T, Saguez C, Bertrand E, Jensen TH and Moore C 2009 Assembly of an export-competent mRNP is needed for efficient release of the 3'-end processing complex after polyadenylation. Mol. Cell Biol. 29 5327–5338

    Article  PubMed  CAS  Google Scholar 

  • Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, Amit I and Regev A 2011 Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29 436–442

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen EB and Lis JT 1993 In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90 7923–7927

    Article  PubMed  CAS  Google Scholar 

  • Rebbapragada I and Lykke-Andersen J 2009 Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21 394–402

    Article  PubMed  CAS  Google Scholar 

  • Reed R and Cheng H 2005 TREX, SR proteins and export of mRNA Curr. Opin. Cell Biol. 17 269–273

    Article  PubMed  CAS  Google Scholar 

  • Reed R 2003 Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15 326–331

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MS, Dargemont C and Stutz F 2004 Nuclear export of RNA Biol. Cell 96 639–655

    CAS  Google Scholar 

  • Rodriguez-Navarro S and Hurt E 2011 Linking gene regulation to mRNA production and export. Curr. Opin. Cell. Biol. 23 302–309

    Article  PubMed  CAS  Google Scholar 

  • Ron D and Walter P 2007 Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 519–529

    Article  PubMed  CAS  Google Scholar 

  • Rougemaille M, Gudipatif RK, Olesen JR, Thomsen R, Seraphin B, Libri D and Jensen TH 2007 Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants. EMBO J. 26 2317–2326

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Echevarria MJ and Peltz SW 1996 Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. EMBO J. 15 2810–2819

    PubMed  CAS  Google Scholar 

  • Ruiz-Echevarría MJ, González CI and Peltz SW 1998 Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J. 17 575–589

    Article  PubMed  Google Scholar 

  • Saguez C, Schmid M, Olesen JR, Ghazy MA, Qu X, Poulsen MB, Nasser T, Moore C and Jensen TH 2008 Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol. Cell 31 91–103

    Article  PubMed  CAS  Google Scholar 

  • San Paolo S, Vanacova S, Schenk L, Scherrer T, Blank D, Keller W and Gerber AP 2009 Distinct roles of non-canonical poly(A) polymerases in RNA metabolism. PLoS Genet. 5 e1000555

    Article  PubMed  CAS  Google Scholar 

  • Sayani S, Janis M, Lee CY, Toesca I and Chanfreau GF 2008 Widespread impact of nonsense-mediated mRNA decay on the yeast intronome. Mol. Cell 31 360–370

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM and van Hoof A 2009 The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat. Struct. Mol. Biol. 16 56–62

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K and Butler JS 2013 Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity WIREs RNA doi: 10.1002/wrna.1155

  • Schneider C, Leung E, Brown J and Tollervey D 2009 The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res. 37 1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Kudla G, Wlotzka W, Tuck A and Tollervey D 2012 Transcriptome-wide analysis of exosome targets Mol. Cell 48 422–433

    CAS  Google Scholar 

  • Schwartz DC and Parker R 2000 mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 20 7933–7942

    Article  PubMed  CAS  Google Scholar 

  • Shalem O, Dahan O, Levo M, Martinez MR, Furman I, Segal E and Pilpel Y 2008 Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol. Syst. Biol. 4 223

    Article  PubMed  CAS  Google Scholar 

  • Shatkin AJ 1985 mRNA cap binding proteins: essential factors for initiating translation Cell 40 223–224

    Article  PubMed  CAS  Google Scholar 

  • She M, Decker CJ, Svergun DI, Round A, Chen N, et al. 2008 Structural basis of dcp2 recognition and activation by dcp1. Mol. Cell 29 337–349

    Google Scholar 

  • She M, Decker CJ, Sundramurthy K, Liu Y, Chen N , Parker R and Song H 2004 Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11 249–256

    Article  PubMed  CAS  Google Scholar 

  • Sheth U and Parker R 2006 Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125 1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Shimotohno K, Kodama Y, Hashimoto J and Miura KI 1977 Importance of 5'-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis Proc. Natl. Acad. Sci. USA 74 2734–2738

    Article  PubMed  CAS  Google Scholar 

  • Shuman S 1997 Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94 12758–12760

    Article  PubMed  CAS  Google Scholar 

  • Sommer P and Nehrbass U 2005 Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. Curr. Opin. Cell Biol. 17 294–301

    Article  PubMed  CAS  Google Scholar 

  • Sparks KA and Dieckmann CL 1998 Regulation of poly(A) site choice of several yeast mRNAs. Nucleic Acids Res. 26 4676–4687

    Article  PubMed  CAS  Google Scholar 

  • Stead JA, Costello JL, Livingstone MJ and Mitchell P 2007 The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res. 35 5556–5567

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz EJ and Brow DA 1998 Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc. Natl. Acad. Sci. USA 95 6699–6704

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz EJ, Conrad NK, Brow DA and Corden JL 2001 RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413 327–331

    Article  PubMed  CAS  Google Scholar 

  • Stephenson LS and Maquat LE 1996 Cytoplasmic mRNA for human triosephosphate isomerase is immune to nonsense-mediated decay despite forming polysomes. Biochimie 78 1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Strambio-de-Castillia C, Blobel G and Rout MP 1999 Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144 839–855

    Article  PubMed  CAS  Google Scholar 

  • Stutz F and Izaurrelde E 2003 The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13:319–327

    Article  PubMed  CAS  Google Scholar 

  • Suntharalingam M and Wente SR 2003 Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4 775–789

    Article  PubMed  CAS  Google Scholar 

  • Synowsky SA and Heck AJ 2008 The yeast Ski complex is a hetero-tetramer. Protein Sci. 17 119–125

    Article  PubMed  CAS  Google Scholar 

  • Tollervey D 2006 Molecular biology: RNA lost in translation. Nature 440 425–426

    Article  PubMed  CAS  Google Scholar 

  • Torchet C, Bousquet-Antonelli C, Milligan L, Thompson E, Kufel J and Tollervey D 2002 Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. Mol. Cell 9 1285–1296

    Google Scholar 

  • Toyn JH, Araki H, Sugino A and Johnston LH 1991 The cell-cycle-regulated budding yeast gene DBF2, encoding a putative protein kinase, has a homologue that is not under cell-cycle control. Gene 104 63–70

    Article  PubMed  CAS  Google Scholar 

  • Tran E and Wente SR 2006 Dynamic nuclear pore complexes: Life on the edge. Cell 125 1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Trcek T, Larson DR, Moldón A, Query CC and Singer RH 2011 Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147 1484–1497

    Article  PubMed  CAS  Google Scholar 

  • Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D and Parker R 2002 Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21 1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL and Parker R 2001 The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104 377–386

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk E, Le Hir H and Seraphin B 2003 DcpS can act in the 5′-3′ mRNA decay pathway in addition to the 3′-5′ pathway. Proc. Natl. Acad. Sci. USA 100 12081–12086

    Article  PubMed  CAS  Google Scholar 

  • van Hoof A, Frischmeyer PA, Dietz HC and Parker R 2002 Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295 2262–2264

    Article  PubMed  Google Scholar 

  • van Hoof A, Lennertz P and Parker R 2000 Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20 441–452

    Article  PubMed  Google Scholar 

  • Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G and Keller W 2005 A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3 e189

    Article  PubMed  CAS  Google Scholar 

  • Vasiljeva L and Buratowski S 2006 Nrd1 interacts with the nuclear exosome for 3′-processing of RNA polymerase II transcripts. Mol. Cell 21 239–248

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Peltz SW and Wilusz CJ 2002 Non-stop decay-a new mRNA surveillance pathway. Bioessays 24 785–788

    Article  PubMed  CAS  Google Scholar 

  • Vinciguerra P and Stutz F 2004 mRNA export: An assembly line from genes to nuclear pores Curr. Opin. Cell Biol. 16 285–292

    Article  CAS  Google Scholar 

  • Wagner E and Lykke-Andersen J 2002 mRNA surveillance: The perfect persist. J. Cell Sci. 115 3033–3038

    PubMed  CAS  Google Scholar 

  • Wang HW, Wang J, Ding F, Callahan K, Bratkowski MA, Butler JS, Nogales E and Ke A 2007 Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc. Natl. Acad. Sci. USA 104 16844–16849

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Lewis MS and Johnson AW 2005 Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11 1291–1302

    Article  PubMed  CAS  Google Scholar 

  • Welch EM and Jacobson A 1999 An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. EMBO J. 18 6134–6145

    Article  PubMed  CAS  Google Scholar 

  • Wente SR and Blobel G 1993 A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J. Cell Biol. 123 275–284

    Google Scholar 

  • Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Régnault B, Devaux F, et al. 2005 Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121 725–737

    Article  PubMed  CAS  Google Scholar 

  • Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL and Tong L2009 Structure and function of the 5'-3' exoribonuclease Rat1 and its activating partner Rai1. Nature 458 784–488

  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J, Guffanti E, Stutz F, Huber W and Steinmetz LM 2009 Bidirectional promoters generate pervasive transcription in yeast. Nature 457 1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Bai X, Lee I, Kallstrom G, Ho J , Brown J, Stevens A and Johnson AW 2000 Saccharomyces cerevisiae RAI1 (YGL 246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell Biol. 20 4006–4015

    Article  PubMed  CAS  Google Scholar 

  • Yepiskoposyan H, Aeschimann F, Nilsson D, Okoniewski M and Mühlemann O 2011 Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17 2108–2118

    Article  PubMed  CAS  Google Scholar 

  • Yonaha M and Proudfoot NJ 2000 Transcriptional termination and coupled polyadenylation in vitro. EMBO J. 19 3770–3777

    Article  PubMed  CAS  Google Scholar 

  • Zaret KS and Sherman F 1982 DNA sequence required for efficient transcription termination in yeast. Cell 28 563–573

    Article  PubMed  CAS  Google Scholar 

  • Zenklusen D, Vinciguerra P, Wyss JC and Stutz F 2002 Stable mRNP formation and export require co-transcriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell Biol. 22 8241–8253

    Article  PubMed  CAS  Google Scholar 

  • Zhang J and Maquat LE 1997 Evidence that translation re-initiation abrogates nonsense-mediated mRNA decay in mammalian cells. EMBO J. 16 826–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research work at author’s laboratory is funded by research grant from Council of Scientific and Industrial Research (Ref. No 38/1280/11/EMR-II), Department of Science and Technology (File No. SR/SO/BB/0066/2012) and a Research Grant from Jadavpur University to BD and from Department of Science and Technology, India, to SD (SR/WOS-A/LS-258/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswadip Das.

Additional information

Corresponding editor: SUDHA BHATTACHARYA

MS received 12 December 2012; accepted 02 May 2013

Corresponding editor: Sudha Bhattacharya

[Das S and Das B 2013 mRNA quality control pathways in Saccharomyces cerevisiae. J. Biosci. 38 1–26] DOI 10.1007/s12038-013-9337-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Das, B. mRNA quality control pathways in Saccharomyces cerevisiae . J Biosci 38, 615–640 (2013). https://doi.org/10.1007/s12038-013-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12038-013-9337-4

Keywords