Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

Abstract

Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8–tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4–6 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the overexpression of membrane proteins in HEK293S GnTI cells.
Figure 2: Map of BacMam expression vector.
Figure 3: Screening constructs by small-scale transient transfection in HEK293S GnTI cells and FSEC; 1 μg of N-terminal EGFP-tagged full-length cASIC1 or cASIC1 Δ463 (cASIC1, truncated 64 residues from the carboxy termini) subcloned into pEG BacMam was transfected separately into HEK293S GnTI cells, as described in the text.
Figure 4: Time course of expression of cASIC1 and GluCl in HEK293S GnTI cells.
Figure 5: Effect of histone deacetylase inhibitors on the expression of cASIC1 and GluCl in HEK293S GnTI cells.
Figure 6: Comparison of expression time course in HEK293S GnTI cells and Sf9 cells.

Similar content being viewed by others

References

  1. Boyce, F.M. & Bucher, N.L. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 2348–2352 (1996).

    Article  CAS  Google Scholar 

  2. Hofmann, C. et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 92, 10099–10103 (1995).

    Article  CAS  Google Scholar 

  3. Kost, T.A., Condreay, J.P., Ames, R.S., Rees, S. & Romanos, M.A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today 12, 396–403 (2007).

    Article  CAS  Google Scholar 

  4. Ames, R. et al. BacMam recombinant baculoviruses in G protein–coupled receptor drug discovery. Receptors Channels 10, 99–107 (2004).

    Article  CAS  Google Scholar 

  5. Boudjelal, M. et al. The application of BacMam technology in nuclear receptor drug discovery. Biotechnol. Annu. Rev. 11, 101–125 (2005).

    Article  CAS  Google Scholar 

  6. Pfohl, J.L. et al. Titration of KATP channel expression in mammalian cells utilizing recombinant baculovirus transduction. Receptors Channels 8, 99–111 (2002).

    Article  CAS  Google Scholar 

  7. Fonfria, E. et al. Cloning and pharmacological characterization of the guinea pig P2X7 receptor orthologue. Br. J. Pharmacol. 153, 544–556 (2008).

    Article  CAS  Google Scholar 

  8. Shukla, S., Schwartz, C., Kapoor, K., Kouanda, A. & Ambudkar, S.V. Use of baculovirus BacMam vectors for expression of ABC drug transporters in mammalian cells. Drug Metab. Dispos. 40, 304–312 (2012).

    Article  CAS  Google Scholar 

  9. Scott, M.J. et al. Efficient expression of secreted proteases via recombinant BacMam virus. Protein Expr. Purif. 52, 104–116 (2007).

    Article  CAS  Google Scholar 

  10. Dukkipati, A., Park, H.H., Waghray, D., Fischer, S. & Garcia, K.C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 62, 160–170 (2008).

    Article  CAS  Google Scholar 

  11. Ely, L.K., Fischer, S. & Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol. 10, 1245–1251 (2009).

    Article  CAS  Google Scholar 

  12. Liu, H. et al. The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim. Biophys. Acta 1824, 938–945 (2012).

    Article  CAS  Google Scholar 

  13. Lupardus, P.J. et al. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 19, 45–55 (2011).

    Article  CAS  Google Scholar 

  14. Deupi, X. et al. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl. Acad. Sci. USA 109, 119–124 (2012).

    Article  CAS  Google Scholar 

  15. Baconguis, I., Bohlen, C.J., Goehring, A., Julius, D. & Gouaux, E. X-ray structure of acid-sensing ion channel 1–snake toxin complex reveals open state of a Na+-selective channel. Cell 156, 717–729 (2014).

    Article  CAS  Google Scholar 

  16. Baconguis, I. & Gouaux, E. Structural plasticity and dynamic selectivity of acid-sensing ion channel–spider toxin complexes. Nature 489, 400–405 (2012).

    Article  CAS  Google Scholar 

  17. Penmatsa, A., Wang, K.H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article  CAS  Google Scholar 

  18. Chen, P.H., Chen, X., Lin, Z., Fang, D. & He, X. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 27, 1345–1350 (2013).

    Article  CAS  Google Scholar 

  19. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  CAS  Google Scholar 

  20. Lee, C.H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).

    Article  CAS  Google Scholar 

  21. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    Article  CAS  Google Scholar 

  22. Hattori, M., Hibbs, R.E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20, 1293–1299 (2012).

    Article  CAS  Google Scholar 

  23. Coric, T., Zheng, D., Gerstein, M. & Canessa, C.M. Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J. Physiol. 568, 725–735 (2005).

    Article  CAS  Google Scholar 

  24. Cully, D.F. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711 (1994).

    Article  CAS  Google Scholar 

  25. Hibbs, R.E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    Article  CAS  Google Scholar 

  26. Berger, I., Fitzgerald, D.J. & Richmond, T.J. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22, 1583–1587 (2004).

    Article  CAS  Google Scholar 

  27. Reeves, P.J., Callewaert, N., Contreras, R. & Khorana, H.G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. USA 99, 13419–13424 (2002).

    Article  CAS  Google Scholar 

  28. Chae, P.S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003–1008 (2010).

    Article  CAS  Google Scholar 

  29. Cooper, D.R. et al. Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallogr. D Biol. Crystallogr. 63, 636–645 (2007).

    Article  CAS  Google Scholar 

  30. Magnani, F., Shibata, Y., Serrano-Vega, M.J. & Tate, C.G. Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc. Natl. Acad. Sci. USA 105, 10744–10749 (2008).

    Article  CAS  Google Scholar 

  31. Serrano-Vega, M.J., Magnani, F., Shibata, Y. & Tate, C.G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl. Acad. Sci. USA 105, 877–882 (2008).

    Article  CAS  Google Scholar 

  32. Hopkins, R. & Esposito, D. A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line. Biotechniques 47, 785–788 (2009).

    Article  CAS  Google Scholar 

  33. Ferris, M.M. et al. Evaluation of the Virus Counter for rapid baculovirus quantitation. J. Virol. Methods 171, 111–116 (2011).

    Article  CAS  Google Scholar 

  34. Shen, C.F., Meghrous, J. & Kamen, A. Quantitation of baculovirus particles by flow cytometry. J. Virol. Methods 105, 321–330 (2002).

    Article  CAS  Google Scholar 

  35. Dulbecco, R. & Vogt, M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harb. Symp. Quant. Biol. 18, 273–279 (1953).

    Article  CAS  Google Scholar 

  36. Al-Fageeh, M.B., Marchant, R.J., Carden, M.J. & Smales, C.M. The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol. Bioeng. 93, 829–835 (2006).

    Article  CAS  Google Scholar 

  37. Ho, Y.C., Chen, H.C., Wang, K.C. & Hu, Y.C. Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol. Bioeng. 88, 643–651 (2004).

    Article  CAS  Google Scholar 

  38. Hsu, C.S., Ho, Y.C., Wang, K.C. & Hu, Y.C. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol. Bioeng. 88, 42–51 (2004).

    Article  CAS  Google Scholar 

  39. Kumar, N., Gammell, P. & Clynes, M. Proliferation control strategies to improve productivity and survival during CHO-based production culture: a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53, 33–46 (2007).

    Article  CAS  Google Scholar 

  40. Pan, Y. et al. Efficient gene delivery into mammalian cells by recombinant baculovirus containing a hybrid cytomegalovirus promoter/Semliki Forest virus replicon. J. Gene Med. 11, 1030–1038 (2009).

    Article  CAS  Google Scholar 

  41. Ramos, L. et al. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 38, 37–41 (2002).

    Article  CAS  Google Scholar 

  42. Sumitomo, Y. et al. Identification of a novel enhancer that binds Sp1 and contributes to induction of cold-inducible RNA-binding protein (cirp) expression in mammalian cells. BMC Biotechnol. 12, 72 (2012).

    Article  CAS  Google Scholar 

  43. Wulhfard, S. et al. Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol. Prog. 24, 458–465 (2008).

    Article  CAS  Google Scholar 

  44. Li, P., Slimko, E.M. & Lester, H.A. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett. 528, 77–82 (2002).

    Article  CAS  Google Scholar 

  45. Backliwal, G. et al. Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol. Bioeng. 101, 182–189 (2008).

    Article  CAS  Google Scholar 

  46. Barsoum, J., Brown, R., McKee, M. & Boyce, F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 8, 2011–2018 (1997).

    Article  CAS  Google Scholar 

  47. Andrell, J. & Tate, C.G. Overexpression of membrane proteins in mammalian cells for structural studies. Mol. Membr. Biol. 30, 52–63 (2013).

    Article  Google Scholar 

  48. Aricescu, A.R., Lu, W. & Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  49. Lee, J.E., Fusco, M.L. & Saphire, E.O. An efficient platform for screening expression and crystallization of glycoproteins produced in human cells. Nat. Protoc. 4, 592–604 (2009).

    Article  CAS  Google Scholar 

  50. Wurm, F. & Bernard, A. Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10, 156–159 (1999).

    Article  CAS  Google Scholar 

  51. Chaudhary, S., Pak, J.E., Gruswitz, F., Sharma, V. & Stroud, R.M. Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat. Protoc. 7, 453–466 (2012).

    Article  CAS  Google Scholar 

  52. Reeves, P.J., Thurmond, R.L. & Khorana, H.G. Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc. Natl. Acad. Sci. USA 93, 11487–11492 (1996).

    Article  CAS  Google Scholar 

  53. Reeves, P.J., Kim, J.M. & Khorana, H.G. Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc. Natl. Acad. Sci. USA 99, 13413–13418 (2002).

    Article  CAS  Google Scholar 

  54. Cockrell, A.S. & Kafri, T. Gene delivery by lentivirus vectors. Mol. Biotechnol. 36, 184–204 (2007).

    Article  CAS  Google Scholar 

  55. Russell, W.C. Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573–2604 (2000).

    Article  CAS  Google Scholar 

  56. Dubensky, T.W. Jr. et al. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70, 508–519 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nivitchanyong, T., Tsai, Y.C., Betenbaugh, M.J. & Oyler, G.A. An improved in vitro and in vivo Sindbis virus expression system through host and virus engineering. Virus Res. 141, 1–12 (2009).

    Article  CAS  Google Scholar 

  58. Bennink, J.R. & Yewdell, J.W. Recombinant vaccinia viruses as vectors for studying T lymphocyte specificity and function. Curr. Top. Microbiol. Immunol. 163, 153–184 (1990).

    CAS  PubMed  Google Scholar 

  59. Berglund, P. et al. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology (NY) 11, 916–920 (1993).

    CAS  Google Scholar 

  60. Liljestrom, P. & Garoff, H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY) 9, 1356–1361 (1991).

    Article  CAS  Google Scholar 

  61. Gonzales, E.B., Kawate, T. & Gouaux, E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460, 599–604 (2009).

    Article  CAS  Google Scholar 

  62. Hattori, M. & Gouaux, E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485, 207–212 (2012).

    Article  CAS  Google Scholar 

  63. Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  Google Scholar 

  64. Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).

    Article  CAS  Google Scholar 

  65. Hill, D.R., Aumiller, J.J., Shi, X. & Jarvis, D.L. Isolation and analysis of a baculovirus vector that supports recombinant glycoprotein sialylation by SfSWT-1 cells cultured in serum-free medium. Biotechnol. Bioeng. 95, 37–47 (2006).

    Article  CAS  Google Scholar 

  66. Jarvis, D.L. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310, 1–7 (2003).

    Article  CAS  Google Scholar 

  67. Wasilko, D.J. et al. The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein. Expr. Purif. 65, 122–132 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Gouaux laboratory for helpful discussions. We are grateful to D. Goodman and G. Westbrook for encouragement and L. Vaskalis for assistance with figures. This work was supported by an Oregon Health and Science University Brain Institute Graduate Student Fellowship for Research on the Neurobiology of Disease (C.-H.L.), by a F32 Postdoctoral National Research Service Award (NRSA) from the US National Institute of Mental Health (NIMH) (K.H.W.), by a postdoctoral fellowship (Forschungsstipendium AL 1725-1/1) from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (T.A.), by a F32 Postdoctoral NRSA from the US National Institute of General Medical Sciences (NIGMS) (D.P.C.), by the US National Institutes of Health (NIH) (E.G.) and by the Vollum Institute. E.G. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.G. screened and optimized expression conditions for cASIC1 and GluCl. A.G., C.-H.L., K.H.W., J.C.M. and D.P.C. optimized the cell growth and virus amplification conditions. C.-H.L. designed the BacMam construct and performed initial characterization of the BacMam construct. I.B. and T.A. cloned and optimized the cASIC1 and GluCl pEG BacMam constructs, respectively. K.C.G. and S.F. provided the pVLAD construct, incubator configuration and consultations to optimize cell growth during the early stages of the project. All authors wrote and edited the manuscript.

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goehring, A., Lee, CH., Wang, K. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9, 2574–2585 (2014). https://doi.org/10.1038/nprot.2014.173

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2014.173

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research