Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In vitro studies on the structurally related mycosporine-like amino acids (MAAs) porphyra-334 and shinorine in aqueous solutions were carried out aiming at their full photochemical and photophysical characterization and expanding the evidence on the assigned UV-photoprotective role of the molecules in vivo. The experiments on shinorine confirmed a high photostability and a poor fluorescence quantum yield, in concordance with previous results on porphyra-334. The estimation of triplet production quantum yields for both MAAs was achieved by laser-flash photolysis measurements. In particular, photosensitization experiments on porphyra-334 support the participation of the triplet state in the photodecomposition mechanism yielding a more precise value of ΦT. As well, photoacoustic calorimetry experiments allowed the first direct quantification of the nonradiative relaxation pathways of the excited MAAs in solution, corroborating that the vast majority (ca. 97%) of the absorbed energy is promptly delivered to the surroundings as heat, consistently with the low photodecomposition and emission yields observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ehling-Schulz, W. Bilger, S. Scherer, UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune J. Bacteriol. 1997, 179, 1940–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R. P. Sinha, M. Klisch, A. Gröniger, D-P. Häder, Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae J. Photochem. Photobiol. B: Biol. 1998, 47, 83–94.

    Article  CAS  Google Scholar 

  3. J. M. Shick, W. C. Dunlap, Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and UV-protective functions in aquatic organisms Annu. Rev. Physiol. 2002, 64, 223–262.

    Article  CAS  PubMed  Google Scholar 

  4. D. Libkind, P. Perez, R. Sommaruga, M. C. Diéguez, M. Ferraro, S. Brizzio, H. Zagarese, M. van Broock, Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by fresh water yeasts Photochem. Photobiol. Sci. 2004, 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  5. J. I. Carreto, V. A. Lutz, S. G. De Marco and M. O. Carignan, Fluence and wavelength dependence of mycosporine-like amino acid synthesis in the dinoflagellate Alexandrium excavatum, in Toxic Marine Phytoplankton, ed. E. Graneli, L. Edler, B. Sundström and D. M. Anderson, Elsevier, New York, 1990, pp. 275–279.

    Google Scholar 

  6. D. Karentz, E. S. McEuen, M. C. Land, W. C. Dunlap, Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 1991, 108, 157–166.

    Article  CAS  Google Scholar 

  7. F. Garcia-Pichel, Ch. E. Wingard, R. W. Castenholz, Evidence regarding the UV-sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapasa sp. Appl.Environ. Microbiol. 1993, 59, 170–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. A. Wängberg, A. Persson, B. Karlson, Effects of UV-B radiation on synthesis of mycosporine-like amino acid and growth in Heterocapsa triquetra (Dinophyceae) J. Photochem. Photobiol. B: Biol. 1997, 37, 141–146.

    Article  Google Scholar 

  9. T. Banaszak, M. P. Lesser, I. B. Kuffner, M. Ondrusek, Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAS) in marine organisms Bull. Mar. Sci. 1998, 63, 617–628.

    Google Scholar 

  10. W. M. Bandaranayake, Mycosporines. Are they nature’s sunscreens? Nat. Prod. Rep. 1998, 15, 159–172.

    Article  CAS  PubMed  Google Scholar 

  11. N. L. Adams, J. M. Shick, Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis Photochem. Photobiol. 1996, 64, 149–158.

    Article  CAS  Google Scholar 

  12. F. R. Conde, M. S. Churio, C. M. Previtali, The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution J. Photochem. Photobiol. B: Biol. 2000, 56, 139–144.

    Article  CAS  Google Scholar 

  13. J. M. Shick, W. C. Dunlap and G. R. Buettner, Ultraviolet (UV) protection in marine organisms II. Biosynthesis, accumulation, and sunscreening function of mycosporine-like amino acids, in Free Radicals in Chemistry, Biology and Medicine, ed. T. Yoshikawa, S. Toyokuni, Y. Yamamoto and Y. Naito, OICA International, London, 2000, pp. 215–228.

    Google Scholar 

  14. S. E. Braslavsky, G. E. Heibel, Time resolved photothermal and photoacoustic methods applied to photoinduced processes in solution Chem. Rev. 1992, 92, 1381–1410.

    Article  CAS  Google Scholar 

  15. T. Gensch, C. Viappiani, Time-resolved phototermal methods: accesing time-resolved thermodynamics of photoinduced processes in chemistry and biology Photochem. Photobiol. Sci. 2003, 2, 699–721.

    Article  CAS  PubMed  Google Scholar 

  16. T. Gensch, C. Viappiani and S. E. Braslavsky, in Encyclopedia of Spectroscopy and Spectrometry, ed. J. C. Lindon, Academic Press, London, 1999, p. 1124.

  17. F. R. Conde, M. O. Carignan, M. S. Churio, J. I. Carreto, In vitro cis-trans photoisomerization of palythene and usujirene. Implications on the in vivo transformation of mycosporine-like amino acids Photochem. Photobiol. 2003, 77, 146–150.

    Article  CAS  PubMed  Google Scholar 

  18. W. S. Gardner, W. H. Miller III, Reverse-phase liquid chromatographic analysis of amino acids after reaction with o-phthalaldehyde Anal. Biochem. 1980, 101, 61–65.

    Article  CAS  PubMed  Google Scholar 

  19. I. Tsujino, K. Yabe, I. Sekikawa, Isolation and structure of a new amino acid, shinorine, from the red alga, Chondrus yendoi Yamada et Mikami Bot. Mar. 1980, 23, 65–68.

    CAS  Google Scholar 

  20. S. Takano, A. Nakanishi, D. Uemura, Y. Hirata, Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red algae, Porphyra tenera Kjellman Chem. Lett. (Chem. Soc. Jpn.) 1979, 26, 419–420.

    Article  Google Scholar 

  21. A. Defoin, R. Defoin-Straatmann, K. Hildenbrand, E. Bittersmann, D. Kreft, H. J. Kuhn, A new liquid actinometer: quantum yield and photo-CIDNP study of phenylglyoxylic acid in aqueous solution J. Photochem. 1986, 33, 237–255.

    Article  CAS  Google Scholar 

  22. D. E. Eaton, (IUPAC) Reference materials for fluorescence measurement Pure Appl. Chem. 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  23. M. A. Brusa, M. S. Churio, M. A. Grela, S. G. Bertolotti, C. M. Previtali, Reaction volume and reaction enthalpy upon aqueous peroxodisulfate dissociation: S2O82- → 2 SO4.-Phys. Chem. Chem. Phys. 2000, 2, 2383–2387.

    Article  CAS  Google Scholar 

  24. S. Abruzzetti, C. Viappiani, D. H. Murgida, R. Erra-Balsells, G. M. Bilmes, Non-toxic, water-soluble photocalorimetric reference compounds for UV and visible excitation Chem. Phys. Lett. 1999, 304, 167–172.

    Article  Google Scholar 

  25. K. Kasama, A. Takematsu, S. Aral, Photochemical reactions of triplet acetone with indole, purine, and pyrimidine derivates J. Phys. Chem. 1982, 86, 2420–2427.

    Article  CAS  Google Scholar 

  26. M. Terazima, Molecular volume and enthalpy changes associated with irreversible photoreaction J. Photochem. Photobiol. C: Photochem. Rev. 2002, 3, 81–108.

    Article  CAS  Google Scholar 

  27. D. C. Neckers, Rose bengal J. Photochem. Photobiol. A: Chem. 1989, 47, 1–29.

    Article  CAS  Google Scholar 

  28. H-J. Suh, H-W. Lee, J. Jung, Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency Photochem. Photobiol. 2003, 78, 109–113.

    Article  CAS  PubMed  Google Scholar 

  29. F. Wilkinson, W. P. Helman, A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation J. Phys. Chem. Ref. Data 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  30. A. Gröniger, D-P. Häder, Stability of mycosporine-like amino acids Recent Res. Dev. Photochem. Photobiol. 2000, 4, 247–252.

    Google Scholar 

  31. D. Karentz, Ultraviolet tolerance mechanisms in Antarctic marine organisms, in Ultravolet radiation in Antarctica: Measurements and biological effects. Antarct. Res. Ser., ed. C. S. Weiler and P. A. Pénale, American Geophysical Union, Washington, DC, 1994, vol. 62, pp. 93–110.

    Google Scholar 

  32. N. J. Turro, Modern Molecular Photochemistry, Benjamin-Cummings Publishing Company Inc., Menlo Park, CA, 1978.

    Google Scholar 

  33. I. Laurion, F. Blouin, S. Roy, The quantitative filter technique for measuring phytoplankton absorption: Interference by MAAs in the UV waveband Limnol. Oceanogr.: Methods 2003, 1, 1–9.

    Article  Google Scholar 

  34. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker Inc., New York, 1993.

    Google Scholar 

  35. T. Gensch, S. Braslavsky, Volume changes related to triplet formation of water soluble Porphyrina. A laser-induced optoacoustic spectroscopy (LIOAS) study J. Phys. Chem. B 1997, 101, 101–108.

    Article  CAS  Google Scholar 

  36. S. E. Braslavsky, Volume changes on triplet production and quenching: time-resolved optoacoustic studies J. Photochem. Photobiol. A: Chem. 1996, 102, 47–49.

    Article  CAS  Google Scholar 

  37. T. Megyes, G. Schubert, M. Kovacs, T. Radnai, T. Grosz, I. Bako, A. Horvath, Structure and properties of the [Ru(bpy)(CN)4]2- complex and its solvent environment: X-ray diffraction and density functional study J. Phys. Chem. A 2003, 107, 9903–9909.

    Article  Google Scholar 

  38. C. D. Borsarelli, S. E. Braslavsky, Volume changes correlate with enthalpy changes during the photoinduced formation of the 3MLCT state of ruthenium(ii) bipyridine cyano complexes in the presence of salts. A case of the entropy-enthalpy compensation effect J. Phys. Chem. B 1998, 102, 6231–6238.

    Article  CAS  Google Scholar 

  39. C. D. Borsarelli, S. G. Bertolotti, C. M. Previtali, Thermodynamic changes associated with the formation of the hydrated electron after photoionization of inorganic anion: time-resolved photoacoustic study Photochem. Photobiol. Sci. 2003, 2, 791–795.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sandra Churio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, F.R., Churio, M.S. & Previtali, C.M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem Photobiol Sci 3, 960–967 (2004). https://doi.org/10.1039/b405782a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1039/b405782a

Profiles

  1. M. Sandra Churio