Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Adaptivity of Archaeal and Bacterial Extremophiles

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Extremophilic prokaryotes, inhabitants of hot, cold, acidic, alkaline, saline, and deep-sea ecosystems, are classified as mono- and polyextremophilic or extreme-tolerant. Under conditions of heating, acidification, or salinization, thermophilic saprotrophic archaea are capable of maintaining endogenous homeostasis and high growth rates by biosynthesis of heat shock enzymes (proteins ofgeneral stress response), C40C40 membrane tetraesters with different numbers of cyclopentane rings, trehalose, and other hyperosmolytes. Small size of reduced genomes (0.5–3.0 Mb) of archaeal thermoacidophiles and hyperthermophiles was shown to reflect their adaptability mainly due to phenotypic changes and probably to have a reduced potential for speciation. In contrast, psychrophilic heterotrophic bacteria respond to sublethal temperature decrease by increased conformational flexibility of the macromolecules and elevated content of unsaturated fatty acids in the composition of their membrane lipids, synthesize membrane-associated glycoproteins, anti-freeze proteins, a group of general stress response proteins, specific and inducible cold shock proteins, which increase the growth rate. When slowing down and stopping the growth, psychrophiles switch on the processes of secondary metabolism and sharply increasing the biosynthesis of adaptogenic exopolysaccharides. Thus, they ameliorate the direct effects of salinity and hydrostatic pressure on viable cells, block the viral attack, and affect the microstructure and physicochemical properties of ice. Marine psychrophilic and piezopsychrophilic bacteria havelarger genomes of 2.6–6.4 Mb, which reflects their adaptability due to genotypic changes and an increased potential for speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., Dock, C., Antranikian, G., and Liebl, W., Genome sequence of Picrophilus torridus and its implications for life around pH 0, Proc. Natl. Acad. Sci. U. S A., 2004, vol. 101, pp. 9091–9096.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bajerski, F., Ganzert, L., Mangelsdorf, K., Padur, L., Lipski, A., and Wagner, D., Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 2666–2671.

    Article  CAS  PubMed  Google Scholar 

  3. Bakermans, C., Tollaksen, S.L., Giometti, C.S., Wilkerson, C., Tiedje, J.M., and Thomashow, M.F., Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures, Extremophiles, 2007, vol. 11, pp. 343–354.

    Article  CAS  PubMed  Google Scholar 

  4. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes, Science, 2007, vol. 315, no. 5819, pp. 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  5. Bautista, M.A., Zhang, C., and Whitaker, R.J., Virus-induced dormancy in the archaeon Sulfolobus islandicus, MBio, 2015, vol. 6. e02565-14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C, Extremophiles, 1997, vol. 1, pp. 14–21.

    Article  PubMed  Google Scholar 

  7. Boone, D.R., Class I. Methanobacteria, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., Boone, D.R., Castenholz, R.W., and Garrity, G.M., Eds., New York: Springer, 2001, vol. 1, pp. 213–235.

    Book  Google Scholar 

  8. Borriss, M., Helmke, E., Hanschke, R., and Schweder, T., Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice, Extremophiles, 2003, vol. 7, pp. 377–384.

    Article  CAS  PubMed  Google Scholar 

  9. Bowman, J.P. and Nichols, D.S., Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1471–1486.

    Article  CAS  PubMed  Google Scholar 

  10. Bowman, J.P., Gosink, J.J., McCammon, S.A., Lewis, T.E., Nichols, D.S., Nichols, P.D., Skerratt, J.H., Staley, J.T., and McMeekin T.A., Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3), Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 1171–1180.

    Article  CAS  Google Scholar 

  11. Bowman, J.P., McCammon, S.A., and Skerratt, J.H., Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes, Microbiology (UK), 1997a, vol. 143, pp. 1451–1459.

    Article  CAS  PubMed  Google Scholar 

  12. Bowman, J.P., McCammon, S.A.,Rea, S.M.,and McMeekin, T.A., The microbial composition of three limnologically disparate hypersaline Antarctic lakes, FEMS Microbiol. Lett., 2000b, vol. 183, pp. 81–88.

    Article  CAS  PubMed  Google Scholar 

  13. Bowman, J.P., Nichols, D.S., and McMeekin, T.A., Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice, Syst. Appl. Microbiol., 1997b, vol. 20, pp. 209–215.

    Article  CAS  Google Scholar 

  14. Bowman, J.P., Rea, S.M., McCammon, S.A., and McMeekin, T.A., Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica, Environ. Microbiol., 2000a, vol. 2, pp. 227–237.

    Article  CAS  PubMed  Google Scholar 

  15. Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P., Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota, Nat. Rev. Microbiol., 2008, vol. 6, pp. 245–252.

    Article  CAS  PubMed  Google Scholar 

  16. Cao, Y., Chastain, R.A., Eloe, E.A., Nogi, Y., Kato, C., and Bartlett, D.H., Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench, Appl. Environ. Microbiol., 2014, vol. 80, pp. 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carillo, S., Casillo, A., Pieretti, G., Parrilli, E., Sannino, F., Bayer-Giraldi, M., Cosconati, S., Novellino, E., Ewert, M., Deming, J.W., Lanzetta, R., Marino, G., Parrilli, M., Randazzo, A., Tutino, M.L., and Corsaro, M.M., A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco)proteins, J. Am. Chem. Soc., 2015, vol. 137, pp. 179–189.

    Article  CAS  PubMed  Google Scholar 

  18. Cavicchioli, R., Thomas, T., and Curmi, P.M., Cold stress response in Archaea, Extremophiles, 2000, vol. 4, pp. 321–331.

    Article  CAS  PubMed  Google Scholar 

  19. Cowan, D. A., Ramond, J.B., Makhalanyane, T.P., and De Maayer, P., Metagenomics of extreme environments, Curr. Opin. Microbiol. 2015, vol. 25, pp. 97–102.

    Article  CAS  PubMed  Google Scholar 

  20. De la Torre, J.R., Walker, C.B., Ingalls, A.E., Konneke, M., and Stahl, D.A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol, Environ. Microbiol., 2008, vol. 10, pp. 810–818.

    Article  CAS  PubMed  Google Scholar 

  21. De Rosa, M., Gambacorta, A., and Gliozzi, A., Structure, biosynthesis, and physicochemical properties of archaebacterial lipids, Microbiol. Rev., 1986, vol. 50, pp. 70–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ermolenko, D.N. and Makhatadze, G.I., Bacterial cold-shock proteins, Cell. Mol. Life Sci., 2002, vol. 59, pp. 1902–1913.

    Article  CAS  PubMed  Google Scholar 

  23. Ewert, M. and Deming, J.W., Sea ice microorganisms: environmental constraints and extracellular responses, Biology (Basel), 2013, vol. 2, pp. 603–628.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fang, J., Chan, O., Kato, C., Sato, T., Peeples, T., and Niggemeyer, K., Phospholipid FA of piezophilic bacteria from the deep sea, Lipids, 2003, vol. 38, pp. 885–887.

    Article  CAS  PubMed  Google Scholar 

  25. Fang, J., Zhang, L., and Bazylinski, D.A., Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry, Trends Microbiol., 2010, vol. 18, pp. 413–422.

    Article  CAS  PubMed  Google Scholar 

  26. Fish, S.A., Shepherd, T.J., McGenity, T.J., and Grant, W.D., Recovery of 16S ribosomal RNA gene fragments from ancient halite, Nature, 2002, vol. 417, pp. 432–436.

    Article  CAS  PubMed  Google Scholar 

  27. Franzmann, P.D., Burton, H.R., and McMeekin, T.A., Halomonas subglaciescola, a new species of halotolerantbacteria isolated from Antarctica, Int. J. Syst. Bacteriol., 1987, vol. 37, pp. 27–34.

    Article  Google Scholar 

  28. Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Macario, E., and Boone, D.R., Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  29. Franzmann, P.D., Springer, N., Ludwig, W., Conway De Macario, E., and Rohde, M., A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov., Syst. Appl. Microbiol., 1992, vol. 15, pp. 573–581.

    Article  Google Scholar 

  30. Franzmann, P.D., Stackebrandt, E., Sanderson, K., Volkman, J.K., Cameron, D.E., Stevenson, P.L., McMeekin, T.A., and Burton, H.R., Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica, Syst. Appl. Microbiol., 1988, vol. 11, pp. 20–27.

    Article  CAS  Google Scholar 

  31. Gilbert, J.A., Hill, P.J., Dodd, C.E., and Laybourn-Parry, J., Demonstration of antifreeze protein activity in Antarctic lake bacteria, Microbiology (UK). 2004, vol. 150, pp. 171–180.

    Article  CAS  PubMed  Google Scholar 

  32. Grant, W.D., Kamekura, M., McGenity, T.J., and Ventosa, A., Class III. Halobacteria, in Bergey’s Manual of Systematic Bacteriology, 2nd ed., Boone, D.R., Castenholz, R.W., and Garrity, G.M., Eds., New York: Springer, 2001, vol. 1, pp. 294–334.

    Google Scholar 

  33. Grant, W.D., Life at low water activity, Philos. Trans. R. Soc. Lond. B., 2004, vol. 359, pp. 1249–1266.

    Article  CAS  Google Scholar 

  34. Grissa, I., Vergnaud, G., and Pourcel, C., The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats, BMC Bioinformatics, 2007, vol. 8, p. 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hallsworth, J.E., Yakimov, M.M., Golyshin, P.N., Gillion, J.L., D’Auria, G., de Lima Alves, F., La Cono, V., Genovese, M., McKew, B.A., Hayes, S.L., Harris, G., Giuliano, L., Timmis, K.N., and McGenity, T.J., Limits of life in MgCl2-containing environments: chaotropicity defines the window, Environ. Microbiol., 2007, vol. 9, pp. 801–813.

    Article  CAS  PubMed  Google Scholar 

  36. Huber, H. and Prangishvili, D., Sulfulobales, in The Prokaryotes, vol. 3. Archaea. Bacteria: Firmicutes, Actinomycetes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 23–51.

  37. Huber, H. and Stetter, K.O., Desulfurococcales, in The Prokaryotes, vol. 3. Archaea. Bacteria: Firmicutes, Actinomycetes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 2006, pp. 52–68.

  38. Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C., and Stetter, K.O., A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont, Nature, 2002, vol. 417, pp. 63–67.

    Article  CAS  PubMed  Google Scholar 

  39. Huston, A.L., Krieger-Brockett, B.B., and Deming, J.W., Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice, Environ. Microbiol., 2000, vol. 2, pp. 383–388.

    Article  CAS  PubMed  Google Scholar 

  40. Huston, A.L., Methe, B., and Deming, J.W., Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H, Appl. Environ. Microbiol., 2004, vol. 70, pp. 3321–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Irgens, R.L., Gosink, J.J., and Staley, J.T., Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica, Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 822–826.

    Article  CAS  PubMed  Google Scholar 

  42. Jebbar, M., Franzetti, B., Girard, E., and Oger, P., Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes, Extremophiles, 2015, vol. 19, pp. 721–740.

    Article  CAS  PubMed  Google Scholar 

  43. Kämpfer, P., Lodders, N., Vaneechoutte, M., and Wauters, G., Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 2238–2240.

    Article  CAS  PubMed  Google Scholar 

  44. Karen, J., Eicken, H., and Deming, J.W., Bacterial activity at −2 to −20°C in Arctic wintertime sea ice, Appl. Environ. Microbiol., 2004, vol. 70, pp. 550–557.

    Article  CAS  Google Scholar 

  45. Kashefi, K., Holmes, D.E., Reysenbach, A.-L., and Lovley, D.R., Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov., Appl. Environ. Microbiol., 2002a, vol. 68, pp. 1735–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kashefi, K., Tor, J.M., Holmes, D.E., Gaw Van Praagh, C.V., Reysenbach, A.L., and Lovley, D.R., Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor, Int. J. Syst. Evol. Microbiol., 2002b, vol. 52, pp. 719–728.

    CAS  PubMed  Google Scholar 

  47. Kaye, J.Z. and Baross, J.A., Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments, Appl. Environ. Microbiol., 2004, vol. 70, pp. 6220–6229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kimura, H., Sugihara, M., Kato, K., and Hanada, S., Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments, Appl. Environ. Microbiol., 2006, v. 72, pp. 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knoblauch, C., Sahm, K., and Jørgensen, B.B., Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1631–1643.

    Article  CAS  PubMed  Google Scholar 

  50. Kotsyurbenko, O.R., Simankova, M.V., Nozhevnikova, A.N., Zhilina, T.N, Bolotina, N.P., Lysenko, A.M., and Osipov, G.A., New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov., Arch. Microbiol., 1995, vol. 163, pp. 29–34.

    Article  CAS  Google Scholar 

  51. Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., and Stetter, K.O., Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C, Arch. Microbiol., 1991, vol. 156, pp. 239–247.

    Article  CAS  Google Scholar 

  52. Lauro, F.M., Chastain, R.A., Blankenship, L.E., Yayanos, A.A., and Bartlett, D.H., The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation, Appl. Environ. Microbiol., 2007, vol. 73, pp. 838–845.

    Article  CAS  PubMed  Google Scholar 

  53. Madigan, M.T., Jung, D.O., Woese, C.R., and Achenbach, L.A., Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat, Arch. Microbiol., 2000, vol. 173, pp. 269–277.

    Article  CAS  PubMed  Google Scholar 

  54. Mancuso Nichols, C.A., Garon, S., Bowman, J.P., Raguénès, G., and Guézennec, J., Production of exopolysaccharides by Antarctic marine bacterial isolates, J. Appl. Microbiol., 2004, vol. 96, pp. 1057–1066.

    Article  CAS  PubMed  Google Scholar 

  55. Mariotti, M., Lobanov, A.V., Manta, B., Santesmasses, D., Bofill, A., Guigó, R., Gabaldón, T., and Gladyshev, V.N., Lokiarchaeota marks the transition between the archaeal and eukaryotic selenocysteine encoding systems, Mol. Biol. Evol., 2016, vol. 33, pp. 2441–2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin, A. and McMinn, A., Sea ice, extremophiles and life on extra-terrestrial ocean worlds, Int. J. Astrobiol., 2017, vol. 17, pp. 1–16.

    Article  Google Scholar 

  57. Marx, J.G., Carpenter, S.D., and Deming, J.W., Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions, Can. J. Microbiol., 2009, vol. 55, pp. 63–72.

    Article  CAS  PubMed  Google Scholar 

  58. McCollom, T.M. an Seewald, J.S., Abiotic synthesis of organic compounds in deep-sea hydrothermal environments, Chem. Rev., 2007, vol. 107, pp. 382–401.

    Article  CAS  PubMed  Google Scholar 

  59. Mesbah, N.M. and Wiegel, J., Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles, Appl. Environ. Microbiol., 2012, vol. 78, pp. 4074–4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson-Sathi, S., Dagan, T., Landan, G., Janssen, A., Steel, M., McInerney, J.O., Deppenmeier, U., and Martin, W.F., Acquisition of 1000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 20537–20542.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nogi, Y. and Kato, C., Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate, Extremophiles, 1999, vol. 3, pp. 71–77.

    Article  CAS  PubMed  Google Scholar 

  62. Nogi, Y., Hosoya, S., Kato, C., and Horikoshi, K., Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 1627–1631.

    Article  CAS  PubMed  Google Scholar 

  63. Nogi, Y., Masui, N., and Kato, C., Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment, Extremophiles, 1998, vol. 2, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  64. Oren, A. and Stetter, K.O., The Order Halobacteriales, in The Prokaryotes, vol. 3. Archaea. Bacteria: Firmicutes, Actinomycetes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds, New York: Springer, 2006, pp. 113–164.

  65. Oren, A., Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius, Can. J. Microbiol., 1986, vol. 32, pp. 4–9.

    Article  CAS  Google Scholar 

  66. Pearson, A., Pi, Y., Zhao, W., Li, W., Li, Y., Inskeep, W., Perevalova, A., Romanek, C., Li, S., and Zhang, C.L., Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs, Appl. Environ. Microbiol., 2008, vol. 74, pp. 3523–3532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pikuta, E.V., Hoover, R.B., and Tang, J., Microbial extremophiles at the limits of life, Crit. Rev. Microbiol., 2007, vol. 33, pp. 183–209.

    Article  CAS  PubMed  Google Scholar 

  68. Poli, A., Finore, I., Romano, I., Gioiello, A., Lama, L., and Nicolas, B., Microbial diversity in extreme marine habitats and their biomolecules, Microorganisms, 2017, vol. 5. pii: E25. https://doi.org/10.3390/microorganisms5020025

    Article  CAS  PubMed  Google Scholar 

  69. Prokofeva, M.I., Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 3116–3122.

    Article  CAS  PubMed  Google Scholar 

  70. Prokofeva, M.I., Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Kuznetsov, B.B., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 2001–2008.

    Article  PubMed  Google Scholar 

  71. Roberts, M.F., Organic compatible solutes of halotolerant and halophilic microorganisms, Saline Systems, 2005, vol. 1, no. 5, pp. 1–30. https://doi.org/10.1186/1746-1448-1-5

    Article  CAS  Google Scholar 

  72. Samson, J.E., Magadán, A.H., Sabri, M., and Moineau S., Revenge of the phages: defeating bacterial defences, Nat. Rev. Microbiol., 2013, vol. 11, pp. 675–687.

    Article  CAS  PubMed  Google Scholar 

  73. Santos, H. and da Costa, M.S., Compatible solutes of organisms that live in hot saline environments, Environ. Microbiol., 2002, vol. 4, pp. 501–509.

    Article  CAS  PubMed  Google Scholar 

  74. Saralov, A.I., Baslerov, R.V., and Kuznetsov, B.B., Haloferax chudinovii sp. nov., a halophilic archaeon from Permian potassium salt deposits, Extremophiles, 2013, vol. 17, pp. 499–504.

    Article  CAS  PubMed  Google Scholar 

  75. Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H-P., and Zillig, W., Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0, J. Bacteriol., 1995, vol. 177, pp. 7050–7059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., and Davies, P.L., The basis for hyperactivity of antifreeze proteins, Cryobiology, 2006, vol. 53, pp. 229–239.

    Article  CAS  PubMed  Google Scholar 

  77. Seitz, K.W., Lazar, C.S., Hinrichs, K.U., Teske, A.P., and Baker, B.J., Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction, ISME J., 2016, vol. 10, pp. 1696–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen, L., Liu, Y., Gu, Z., Xu, B., Wang, N., Jiao, N., Liu, H., and Zhou, Y., Massilia eurypsychrophila sp. nov., a facultatively psychrophilic bacteria isolated from ice core, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 2124–2129.

    Article  CAS  PubMed  Google Scholar 

  79. Sheppard, C. and Werner, F., Structure and mechanisms of viral transcription factors in archaea, Extremophiles, 2017, vol. 21, pp. 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shivaji, S. and Reddy, G.S., Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and Gpsychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean, Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 3264–3275.

    Article  CAS  PubMed  Google Scholar 

  81. Siddiqui, K.S., Williams, T.J., Wilkins, D., Yau, S., Allen, M.A., Brown, M.V., Lauro, F.M., and Cavicchioli, R., Psychrophiles, Annu. Rev. Earth Planet Sci., 2013, vol. 41, pp. 87–115.

    Article  CAS  Google Scholar 

  82. Siliakus, M.F., van der Oost, J., and Kengen, S.W.M., Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure, Extremophiles, 2017, vol. 21, pp. 651–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Simankova, M.V., Kotsyurbenko, O.R., Stackebrandt, E., Kostrikina, N.A., Lysenko, A.M., Osipov, G.A., and Nozhevnikova, A.N., Acetobacterium tundrae sp,. nov., a new psychrophilic acetogenic bacterium from tundra soil, Arch. Microbiol., 2000, vol. 174, pp. 440–447.

    Article  CAS  PubMed  Google Scholar 

  84. Singh, N., Kendall, M.M., Liu, Y., and Boone, D.R., Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 2531–2538.

    Article  CAS  PubMed  Google Scholar 

  85. Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., van Eijk, R., Schleper, C., Guy, L., and Ettema, T.J.G., Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 2015, vol. 521, pp. 173–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spring, S., Merkhoffer, B., Weiss, N., Kroppenstedt, R.M., Hippe, H., and Stackebrandt, E., Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov., Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  87. Steinle, L., Knittel, K., Felber, N., Casalino, C., de Lange, G., Tessarolo, C., Stadnitskaia, A., Sinninghe Damste, J.S., Zopfi, J., Lehmann, M.F., Treude, T., and Niemann, H., Life on the edge: active microbial communities in the Kryos MgCl2– brine basin at very low water activity, ISME J., 2018, vol. 12, pp. 1414–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Svensäter, G., Sjögreen, B., and Hamilton, I.R., Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins, Microbiology (UK), 2000, vol. 146, pp. 107–117.

    Article  PubMed  Google Scholar 

  89. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K., Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 10949–10954.

    Article  Google Scholar 

  90. Tenchov, B., Vescio, E.M., Sprott, G.D., Zeidel, M.L., and Mathai, J.C., Salt tolerance of archaeal extremely halophilic lipid membranes, J. Biol. Chem., 2006, vol. 281, pp. 10016–10023.

    Article  CAS  PubMed  Google Scholar 

  91. Van der Wielen, P.W., Bolhuis, H., Borin, S., Daffonchio, D., Corselli, C., Giuliano, L., de Lange, G.J., Huebner, A., Varnavas, S.P., Thomson, J., Tamburini, C., Marty, D., McGenity, T.J., and Timmis, K.N., The enigma of prokaryotic life in deep hypersaline anoxic basins, Science, 2005, vol. 307, no. 5706, pp. 121–123.

    Article  CAS  PubMed  Google Scholar 

  92. Vargas, M., Kashefi, K., Blunt-Harris, E.L., and Lovley, D.R., Microbiological evidence for Fe(III) reduction on early Earth, Nature, 1998, vol. 395, pp. 65–67.

    Article  CAS  PubMed  Google Scholar 

  93. Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A., and Stetter, K.O., Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2918–2926.

    PubMed  PubMed Central  Google Scholar 

  94. Vreeland, R.H., Straight, S., Krammes, J., Dougherty, K., Rosenzweig, W.D., and Kamekura, M., Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate, Extremophiles, 2002, vol. 6, pp. 445–452.

    Article  CAS  PubMed  Google Scholar 

  95. Wells, L.E. and Deming, J.W., Characterization of a cold-active bacteriophage on two psychrophilic marine hosts, Aquat. Microb. Ecol., 2006, vol. 45, pp. 15–29.

    Article  Google Scholar 

  96. Williams, D., Gogarten, J.P., and Papke, R.T., Quantifying homologous replacement of loci between haloarchaeal species, Genome Biol. Evol., 2012, vol. 4, pp. 1223–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Woese, C.R., Kandler, O., and Wheelis, M.L., Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, pp. 4576–4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yakimov, M.M., La Cono, V., Spada, G.L., Bortoluzzi, G., Messina, E., Smedile, F., Arcadi, E., Borghini, M., Ferrer, M., Schmitt-Kopplin, P., Hertkorn, N., Cray, J.A., Hallsworh, J.E., Golyshin, P.N., and Giuliano, L., Microbial community of the deep-see brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA, Environ. Microbiol., 2015, vol. 17, pp. 364–382.

    Article  CAS  PubMed  Google Scholar 

  99. Yayanos, A.A., Evolutional and ecological implications of the properties of deep-sea barophilic bacteria, Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, pp. 9542 –9546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Bäckström, D.1., Juzokaite, L., Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., Stott, M.B., Nunoura, T., Banfield, J.F., Schramm, A., Baker, B.J., Spang, A., and Ettema, T.J., Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, 2017, vol. 541, pp. 353–358.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, G., Jiang, N., Liu, X., and Dong, X., Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau, Appl. Environ. Microbiol., 2008, vol. 74, pp. 6114–6120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out as part of the government task, the topic registration no. 01201353247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Saralov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the a-uthors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saralov, A.I. Adaptivity of Archaeal and Bacterial Extremophiles. Microbiology 88, 379–401 (2019). https://doi.org/10.1134/S0026261719040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S0026261719040106

Keywords: