Abstract
Extreme environments, marine hydrothermal vents, hot springs, hypersaline conditions, deep marine environments, extreme cold, extreme hot, extreme low or high pH conditions, and radionuclide-enriched sites are the residence of several genera of a distinctive bacterial population. Polyextremophiles as well as a polyextremotolerant bacterial population have their unique niche. During the course of time and evolutionary advancements, they develop special physiology, morphology, metabolism, and several other biochemical pathways. Due to their unique physiology and biochemical machinery, these extremophiles have tremendous potential for future research and industrial application in severe environmental conditions (such as Thermus aquaticus, Acidithiobacillus, Arthrobacter, Geobacillus, and several other genera). Traditional bacteriological methods of isolation, culture, and the study of colony morphology, genomics, and proteomics analysis in a lab are abstruse or unachievable for extremophiles. Metagenomics and metaproteomics are proven and convenient tools to understand their genetic, physiological, and biochemical makeup and optimization for their potential applications. These sets of culture-independent methods not only avoid hectic time-consuming traditional techniques but also help direct the extraction of knowledge of the presence and functionality of microbes in their functional and realized niche. The application of screening, cloning, and expression of genomic information can lead to the discovery of novel enzymes and other proteins for future research and industrial applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- PCR:
-
Polymerase chain reaction
- Taq DNA polymerase:
-
A DNA polymerase enzyme derived from the species Thermus aquaticus
- T/2:
-
Thermostability/half-life
References
Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3(6):489–498. https://doi.org/10.1038/nrmicro1157
Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J (2012) Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK 17. Biotechnol Bioeng 109(3):686–694. https://doi.org/10.1002/bit.24346
Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169. https://doi.org/10.1128/mr.59.1.143-169.1995
Andrade CMMC, Aguiar WB, Antranikian G (2001) Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl Biochem Biotechnol – Part A Enzym Eng Biotechnol 91–93:655–669. https://doi.org/10.1385/ABAB:91-93:1-9:655
Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52(2):485–491. https://doi.org/10.1099/00207713-52-2-485
Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294. https://doi.org/10.1128/AEM.00646-11
Aston JE, Peyton BM (2007) Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiol Lett 274(2):196–203. https://doi.org/10.1111/j.1574-6968.2007.00851.x
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM (2019) Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol 280:478–488. https://doi.org/10.1016/j.biortech.2019.02.008
Bachofen R (1986) Microorganisms in extreme environments introduction. Experientia 42(11):1179–1182. https://doi.org/10.1007/BF01946387
Baker BJ, Dick GJ (2013) Omic approaches in microbial ecology: charting the unknown. Microbe 8(9):353–360. https://doi.org/10.1128/microbe.8.353.1
Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321–326. https://doi.org/10.1046/j.1462-2920.2003.00419.x
Bala A, Singh B (2019) Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels. Renew Energy 136:1231–1244. https://doi.org/10.1016/j.renene.2018.09.100
Basen M, Müller V (2017) “Hot” acetogenesis. Extremophiles 21:15–26. https://doi.org/10.1007/s00792-016-0873-3
Bergey DH (1919) Thermophilic bacteria. J Bacteriol IV(4):301–306. https://doi.org/10.1128/jb.4.4.301-306.1919
Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191(7):2340–2352. https://doi.org/10.1128/JB.01377-08
Bhandiwad A, Shaw AJ, Guss A, Guseva A, Bahl H, Lynd LR (2014) Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab Eng 21:17–25. https://doi.org/10.1016/j.ymben.2013.10.012
Biswas R, Prabhu S, Lynd LR, Guss AM (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One 9(2):1–7. https://doi.org/10.1371/journal.pone.0086389
Bowman JP (2001) Methods for psychrophilic bacteria. Methods Microbiol 30:591–614. https://doi.org/10.1016/s0580-9517(01)30064-8
Bowman JP (2017) Genomics of psychrophilic bacteria and archaea. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer, Cham, pp 345–387. https://doi.org/10.1007/978-3-319-57057-0_15
Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47(3):300–304. https://doi.org/10.1007/s00248-003-1040-9
Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98(I):289–297. https://doi.org/10.1128/jb.98.1.289-297.1969
Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84(1):54–68. https://doi.org/10.1007/BF00408082
Cabrera MÁ, Blamey JM (2018) Biotechnological applications of archaeal enzymes from extreme environments. Biol Res 51(1):1–15. https://doi.org/10.1186/s40659-018-0186-3
Cayol J, Ollivier B, Patel BK, Ageron E, Grimont PA, Prensier G, Garcia JL (1995) Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. Int J Syst Bacteriol 45(4):790–797. https://doi.org/10.1099/00207713-45-4-790
Choure K, Parsai S, Kotoky R, Srivastava A, Tilwari A, Rai PK, Sharma A, Pandey P (2021) Comparative metagenomic analysis of two alkaline hot springs of Madhya Pradesh, India and deciphering the extremophiles for industrial enzymes. Front Genet 12:643423. https://doi.org/10.3389/fgene.2021.643423
Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11(6):398–408. https://doi.org/10.1016/j.ymben.2009.08.005
Da Fonseca FSA, Angolini CFF, Arruda MAZ, Junior CAL, Santos CA, Saraiva AM, Pilau E, Souza AP, Laborda PR, De Oliveira PFL, De Oliveira VM, Reis FDAM, Marsaioli AJ (2015) Identification of oxidoreductases from the petroleum Bacillus safensis strain. Biotechnol Rep 8:152–159. https://doi.org/10.1016/j.btre.2015.09.001
Dalmasso C, Oger P, Selva G, Courtine D, L’Haridon S, Garlaschelli A, Roussel E, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Alain K (2016) Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman rise. Syst Appl Microbiol 39(7):440–444. https://doi.org/10.1016/j.syapm.2016.08.003
De Vrije T, Budde MAW, Lips SJ, Bakker RR, Mars AE, Claassen PAM (2010) Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35(24):13206–13213. https://doi.org/10.1016/j.ijhydene.2010.09.014
Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151. https://doi.org/10.1016/S1367-5931(00)00183-6
Dennett GV, Blamey JM (2016) A new thermophilic nitrilase from an antarctic hyperthermophilic microorganism. Front Bioeng Biotechnol 4:1–9. https://doi.org/10.3389/fbioe.2016.00005
Di Donato P, Buono A, Poli A, Finore I, Abbamondi GR, Nicolaus B, Lama L (2019) Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability 11(1):149. https://doi.org/10.3390/su11010149
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF (2009) Community-wide analysis of microbial genome sequence signatures. Genome Biol 10(8):R85. https://doi.org/10.1186/gb-2009-10-8-r85
Edwardson CF, Hollibaugh JT (2018) Composition and activity of microbial communities along the redox gradient of an alkaline, hypersaline, Lake. Front Microbiol 9:1–18. https://doi.org/10.3389/fmicb.2018.00014
Feng S, Powell SM, Wilson R, Bowman JP (2014) Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biol Evol 6(1):133–148. https://doi.org/10.1093/gbe/evt209
Fernandez AB, Ghai R, Martin-Cuadrado AB, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A (2013) Metagenome sequencing of prokaryotic microbiota from two hypersaline ponds of a marine saltern in Santa Pola, Spain. Genome Announc 1(6). https://doi.org/10.1128/genomeA.00933-13
Feyhl-Buska J, Chen Y, Jia C, Wang JX, Zhang CL, Boyd ES (2016) Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Front Microbiol 7(AUG). https://doi.org/10.3389/fmicb.2016.01323
Foophow T, Tanaka S, Koga Y, Takano K, Kanaya S (2010) Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides. Protein Eng Des Sel 23(5):347–355. https://doi.org/10.1093/protein/gzp092
Fraser CM, Eisen JA, Salzberg SL (2000) Methods for whole-genome analysis. Nature 406:799–803. https://doi.org/10.1038/35021244
Gogliettino M, Riccio A, Cocca E, Rossi M, Palmieri G, Balestrieri M (2014) A new pepstatin-insensitive thermopsin-like protease overproduced in peptide-rich cultures of Sulfolobus solfataricus. Int J Mol Sci 15(2):3204–3219. https://doi.org/10.3390/ijms15023204
Goto E, Kodama T, Minoda Y (1978) Growth and taxonomy of thermophilic hydrogen bacteria. Agric Biol Chem 42(7):1305–1308. https://doi.org/10.1080/00021369.1978.10863157
Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles 18:865–875. https://doi.org/10.1007/s00792-014-0664-7
Hedlund BP, Murugapiran SK, Alba TW, Levy A, Dodsworth JA, Goertz GB, Ivanova N, Woyke T (2015) Uncultivated thermophiles: current status and spotlight on “Aigarchaeota”. Curr Opin Microbiol 25:136–145. https://doi.org/10.1016/j.mib.2015.06.008
Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64(10):3576–3583. https://doi.org/10.1128/aem.64.10.3576-3583.1998
Ingraham JL (1958) Growth psychrophilic bacteria. J Bacteriol 76(1):75–80. https://doi.org/10.1128/jb.76.1.75-80.1958
Iwabuchi T, Harayama S (1998) Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273(14):8332–8336. https://doi.org/10.1074/jbc.273.14.8332
Javor B (2011) Hypersaline environments. Springer, Berlin. https://doi.org/10.1007/978-3-642-74370-2
Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69(7):4282–4284. https://doi.org/10.1128/AEM.69.7.4282-4284.2003
Kádár Z, De Vrije T, Van Noorden GE, Budde MAW, Szengyel Z, Réczey K, Claassen PAM (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol 114(1–3):497–508. https://doi.org/10.1385/ABAB:114:1-3:497
Kim MH, Kim HK, Lee JK, Park SY, Oh TK (2000) Thermostable Lipase of Bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64:280–286. https://doi.org/10.1271/bbb.64.280
Kim BK, Lee BH, Lee YJ, Jin IH, Chung CH, Lee JW (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym Microb Technol 44(6–7):411–416. https://doi.org/10.1016/j.enzmictec.2009.02.005
Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina M, Gupta V, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16
Kristjánsson JK, Hreggvidsson GO (1995) Ecology and habitats of extremophiles. World J Microbiol Biotechnol 11(1):17–25. https://doi.org/10.1007/BF00339134
Kwak YS, Akiba T, Kudo T (1998) Purification and characterization of α-amylase from hyperthermophilic archaeon Thermococcus profundus, which hydrolyzes both α-1,4 and α-1,6 glucosidic linkages. J Ferment Bioeng 86(4):363–367. https://doi.org/10.1016/S0922-338X(99)89005-9
Madigan MT (2000) Extremophilic bacteria and microbial diversity. Ann Missouri Bot Gard 87(1):3–12. https://doi.org/10.2307/2666205
Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24(4):572–587. https://doi.org/10.1078/0723-2020-00054
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10(MAR):780. https://doi.org/10.3389/fmicb.2019.00780
Mesbah NM, Wiegel J (2008) Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann N Y Acad Sci 1125:44–57. https://doi.org/10.1196/annals.1419.028
Mirete S, Morgante V, González-Pastor JE (2016) Functional metagenomics of extreme environments. Curr Opin Biotechnol 38:143–149. https://doi.org/10.1016/j.copbio.2016.01.017
Miyazaki K (2022) Complete genome sequences of thermus strains isolated from. Microbiol Resour Announc 1(14):20–22. https://doi.org/10.1128/mra.00354-22
Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ, Peyton BM (1999) Halomonas campisalis sp, nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22(4):551–558. https://doi.org/10.1016/S0723-2020(99)80008-3
Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–65. https://doi.org/10.1038/scientificamerican0490-56
Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226. https://doi.org/10.1038/ismej.2013.8
Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z, Shahzadeh Fazeli SA, Bolhuis H (2017) Microbial diversity in the hypersaline Lake Meyghan. Iran Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-11585-3
Nakayama S, Kiyoshi K, Kadokura T, Nakazato A (2011) Butanol production from crystalline cellulose by Cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4. Appl Environ Microbiol 77(18):6470–6475. https://doi.org/10.1128/AEM.00706-11
Narayan A, Patel V, Singh P, Patel A, Jain K, Karthikeyan K, Shah A, Madamwar D (2018) Response of microbial community structure to seasonal fluctuation on soils of Rann of Kachchh, Gujarat, India: representing microbial dynamics and functional potential. Ecol Genet Genomics 6:22–32. https://doi.org/10.1016/j.egg.2017.11.001
Ng TK, Ben-Bassat A, Zeikus JG (1981) Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41(6):1337–1343. https://doi.org/10.1128/aem.41.6.1337-1343.1981
Nguyen TAD, Kim JP, Kim MS, Oh YK, Sim SJ (2008) Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int J Hydrog Energy 33(5):1483–1488. https://doi.org/10.1016/j.ijhydene.2007.09.033
Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing, and application in aromatic pollutant bioremediation. Front Microbiol 8:1–17. https://doi.org/10.3389/fmicb.2017.00265
Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T, Lovley DR (2013) U(VI) reduction by diverse outer surface c-Type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79(20):6369–6374. https://doi.org/10.1128%2FAEM.02551-13
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M (2018) Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol 9:2309. https://doi.org/10.3389/fmicb.2018.02309
Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) Microbiology: a microbial arsenic cycle in a salt-saturated, extreme environment. Science (80-) 308(5726):1305–1308. https://doi.org/10.1126/science.1110832
Oshima T (1975) Thermine: a new polyamine from an extreme thermophile. Biochem Biophys Res Commun 63(4):1093–1098. https://doi.org/10.1016/0006-291X(75)90681-6
O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrog Energy 33(4):1204–1214. https://doi.org/10.1016/j.ijhydene.2007.12.015
Pandit AS, Joshi MN, Bhargava P, Shaikh I, Ayachit GN, Raj SR, Saxena AK, Bagatharia SB (2015) A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the world. Extremophiles 19(5):973–987. https://doi.org/10.1007/s00792-015-0772-z
Rampelotto PH (2013) Extremophiles and extreme environments. Life 3(3):482–485. https://doi.org/10.3390/life3030482
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437. https://doi.org/10.1038/nature12352
Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1(1):1–30. https://doi.org/10.1186/1746-1448-1-5
Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17(4):649–662. https://doi.org/10.1007/s00792-013-0548-2
Sanchez AC, Ravanal MC, Andrews BA, Asenjo JA (2019) Heterologous expression and biochemical characterization of a novel cold-active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expr Purif 155:78–85. https://doi.org/10.1016/j.pep.2018.11.009
Schicho RN, Ma K, Adams MWW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175(6):1823–1830. https://doi.org/10.1128/jb.175.6.1823-1830.1993
Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177(24):7050–7059. https://doi.org/10.1128/jb.177.24.7050-7059.1995
Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6(8):6–9. https://doi.org/10.1186/gb-2005-6-8-229
Segerer A, Neuner A, Kristjansson IJK, Stetter K (1986) Acidianus infernus gen. nov.? sp. nov. and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36(4):559–564. https://doi.org/10.1099/00207713-36-4-559
Sharma V, Ayothiraman S, Dhakshinamoorthy V (2019) Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan film. J Biosci Bioeng 127(6):672–678. https://doi.org/10.1016/j.jbiosc.2018.11.008
Shurigin V, Hakobyan A, Panosyan H, Egamberdieva D, Davranov K, Birkeland NK (2019) A glimpse of the prokaryotic diversity of the large Aral Sea reveals novel extremophilic bacterial and archaeal groups. Microbiology 8(9):1–13. https://doi.org/10.1002/mbo3.850
Singh KK, Ray L (2021) Extremozymes: biocatalysts from extremophilic microorganisms and their relevance in current biotechnology. Environ Agric Microbiol Adv Appl 293–311. https://doi.org/10.1002/9781119525899.ch14
Singh P, Jain K, Desai C, Tiwari O, Madamwar D (2018) Microbial community dynamics of extremophiles/extreme environment. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic Press, Elsevier Inc., pp 323–332. https://doi.org/10.1016/B978-0-12-814849-5.00018-6
Staley J, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39(1):321–346. https://doi.org/10.1146/annurev.micro.39.1.321
Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15(5):613–620. https://doi.org/10.1016/j.mib.2012.09.001
Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10(5):357–362. https://doi.org/10.1007/s00792-006-0012-7
Sudha Rani K, Swamy MV, Seenayya G (1997) Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum. Biotechnol Lett 19(8):819–823. https://doi.org/10.1023/A:1018312931542
Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S (2013) Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels 6(1):31. https://doi.org/10.1186/1754-6834-6-31
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105(31):10949–10954. https://doi.org/10.1073/pnas.0712334105
Tomás AF, Karagöz P, Karakashev D, Angelidaki I (2013) Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol Bioeng 110(6):1574–1582. https://doi.org/10.1002/bit.24813
Umezawa K, Kojima H, Kato Y, Fukui M (2021) Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst Appl Microbiol 44(2):126184. https://doi.org/10.1016/j.syapm.2021.126184
Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan N, Lappin-Scott H, Oyeston P (eds) Prokaryotic diversity: mechanisms and significance. Publ Soc Gen Microbiol (1988):223–254. Cambridge University press. https://doi.org/10.1017/CBO9780511754913.015
Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544. https://doi.org/10.1128/mmbr.62.2.504-544.1998
Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–824. https://doi.org/10.1007/s00792-014-0681-6
Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT (2015) Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25:80–87. https://doi.org/10.1016/j.mib.2015.05.002
Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19:17–29. https://doi.org/10.1007/s00792-014-0704-3
Vincent AT, Trudel MV, Freschi L, Nagar V, Gagné-Thivierge C, Levesque RC, Charette SJ (2016) Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genomics 17(1):1–12. https://doi.org/10.1186/s12864-016-2381-3
Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R (2013) Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of Xanthorhodopsin. PLoS One 8(5):e63422. https://doi.org/10.1371/journal.pone.0063422
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6(10):2–6. https://doi.org/10.1371/journal.pone.0026161
Wu YR, Mao A, Sun C, Shanmugam S, Li J, Zhong M, Hu Z (2017) Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. Int J Biol Macromol 104:716–723. https://doi.org/10.1016/j.ijbiomac.2017.06.084
Yao S, Mikkelsen MJ (2010) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19(3):123–133. https://doi.org/10.1159/000321498
Zeikus JG (1979) Thermophilic bacteria: ecology, physiology and technology. Enzym Microb Technol 4(1):243–252. https://doi.org/10.1016/0141-0229(79)90043-7
Zhang J, Cao X, Xin Y, Xue S, Zhang W (2013) Purification and characterization of a dehalogenase from Pseudomonas stutzeri DEH130 isolated from the marine sponge Hymeniacidon perlevis. World J Microbiol Biotechnol 29(10):1791–1799. https://doi.org/10.1007/s11274-013-1340-2
Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J (2020) Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol 8(June):1–18. https://doi.org/10.3389/fbioe.2020.00483
Zverlov V, Piotukh K, Dakhova O, Velikodvorskaya G, Borriss R (1996) The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45(1–2):245–247. https://doi.org/10.1007/s002530050678
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Majumdar, J., Moulik, D., Santra, S.C., Hossain, A. (2023). Extremophile Bacterial and Archaebacterial Population: Metagenomics and Novel Enzyme Reserve. In: Mathur, P., Kapoor, R., Roy, S. (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_20
Download citation
DOI: https://doi.org/10.1007/978-981-99-0030-5_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0029-9
Online ISBN: 978-981-99-0030-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)