Abstract
Glutamate and glycine are important neurotransmitters in the brain. An action potential propagating in the terminal of a presynaptic neuron causes the release of glutamate and glycine in the synapse by vesicles fusing with the cell membrane, which then activate various receptors on the cell membrane of the post-synaptic neuron. Entry of Ca\(^{2+}\) through the activated NMDA receptors leads to a host of cellular processes of which long-term potentiation is of crucial importance because it is widely considered to be one of the major mechanisms behind learning and memory. By analysing the readout of glutamate concentration by the post-synaptic neurons during Ca\(^{2+}\) signaling, we find that the average receptor density in hippocampal neurons has evolved to allow for accurate measurement of the glutamate concentration in the synaptic cleft.
Graphical abstract
Similar content being viewed by others
Data availability statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data associated with this manuscript.]
References
H. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. 100(9), 5449–5454 (2003)
R.G. Endres, N.S. Wingreen, Maximum likelihood and the single receptor. Phys. Rev. Lett. 103(15), 158101 (2009)
F. Rieke, D.A. Baylor, Single-photon detection by rod cells of the retina. Rev. Mod. Phys. 70(3), 1027 (1998)
J.E. Segall, Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. 90(18), 8332–8336 (1993)
W.J. Rappel, H. Levine, Receptor noise limitations on chemotactic sensing. Proc. Natl. Acad. Sci. 105(49), 19270–19275 (2008)
M. Ueda, T. Shibata, Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys. J . 93(1), 11–20 (2007)
H.C. Berg, E.M. Purcell, Physics of chemoreception. Biophys. J. 20(2), 193–219 (1977)
W. Bialek, S. Setayeshgar, Physical limits to biochemical signaling. Proc. Natl. Acad. Sci. 102(29), 10040–10045 (2005)
K. Wang, W.J. Rappel, R. Kerr, H. Levine, Quantifying noise levels of intercellular signals. Phys. Rev. E 75(6), 061905 (2007)
S. Fancher, A. Mugler, Fundamental limits to collective concentration sensing in cell populations. Phys. Rev. Lett. 118(7), 078101 (2017)
T. Mora, N.S. Wingreen, Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104(24), 248101 (2010)
B. Hu, W. Chen, W.J. Rappel, H. Levine, Physical limits on cellular sensing of spatial gradients. Phys. Rev. Lett. 105(4), 048104 (2010)
V. Wasnik, Limitations on concentration measurements and gradient discerning times in cellular systems. Phys. Rev. E 105(3), 034410 (2022)
R.G. Endres, N.S. Wingreen, Accuracy of direct gradient sensing by single cells. Proc. Natl. Acad. Sci. 105(41), 15749–15754 (2008)
A. Mugler, A. Levchenko, I. Nemenman, Limits to the precision of gradient sensing with spatial communication and temporal integration. Proc. Natl. Acad. Sci. 113(6), E689–E695 (2016)
D. Ellison, A. Mugler, M.D. Brennan, S.H. Lee, R.J. Huebner, E.R. Shamir, L.A. Woo, J. Kim, P. Amar, I. Nemenman, A.J. Ewald, A. Levchenko, Proc. Natl. Acad. Sci. U. S. A. 113, E679 (2016)
B.W. Andrews, P.A. Iglesias, PLoS Comput. Biol. 3, e153 (2007)
B. Hu, W. Chen, W.-J. Rappel, H. Levine, Phys. Rev. Lett. 105, 048104 (2010)
F. Tostevin, P.R. ten Wolde, M. Howard, PLoS Comput. Biol. 3, e78 (2007)
J.W. Murrough, C.G. Abdallah, S.J. Mathew, Targeting glutamate signalling in depression: progress and prospects. Nat. Rev. Drug Discov. 16(7), 472–486 (2017)
K.M. Franks, T.M. Bartol, T.J. Sejnowski, A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002)
T. Budisantoso, H. Harada, N. Kamasawa, Y. Fukazawa, R. Shigemoto, K. Matsui, Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held. J Physiol. 591(1), 219–39 (2013). https://doi.org/10.1113/jphysiol.2012.241398. (Epub 2012 Oct 15. PMID: 23070699; PMCID: PMC3630782)
W.R. Holmes, Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys. J. 69(5), 1734–1747 (1995)
N. Riveros, J. Fiedler, N. Lagos, C. Munoz, F. Orrego, Glutamate in rat brain cortex synaptic vesicles: influence of the vesicle isolation procedure. Brain Res. 386, 405–408 (1986)
T.A. Ryan, H. Reuter, B. Wendland, F.E. Schweizer, R.W. Tsien, S.J. Smith, The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11(4), 713–724 (1993). (ISSN 0896-6273)
J.W. Johnson, P. Ascher, Equilibrium and kinetic study of glycine action on the N-methyl-D-aspartate receptor in cultured mouse brain neurons. J Physiol. 455, 339–65 (1992). https://doi.org/10.1113/jphysiol.1992.sp019305. (PMID: 1484357; PMCID: PMC1175648)
M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000)
J.J. Saucerman, D.M. Bers, Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca\(^2+\) in cardiac myocytes. Biophys. J . 95(10), 4597–4612 (2008)
Y. Timofeeva, K. Volynski, Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation. Front. Cell. Neurosci. 9, 239 (2015)
D.X. Keller, K.M. Franks, T.M. Bartol Jr., T.J. Sejnowski, Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS ONE 3(4), e2045 (2008)
J.R. Cottrell, G.R. Dube, C. Egles, G. Liu, Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J. Neurophysiol. 84(3), 1573–1587 (2000)
V.H. Wasnik, P. Lipp, K. Kruse, Accuracy of position determination in Ca\(^2+\) signaling. Phys. Rev. E 100(2), 022401 (2019)
V.H. Wasnik, P. Lipp, K. Kruse, Positional information readout in Ca\(^2+\) signaling. Phys. Rev. Lett. 123(5), 058102 (2019)
Funding
We acknowledge funding from SERB Grant No: EEQ/2021/000006.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to the manuscript.
Corresponding author
Appendix A
Appendix A
We derive how Eq. 15 is got in this appendix. We have
Now up to \(\mathcal {O}((kcT)^3)\)
Adding the above four equations gives
Hence,
Similarly,
Hence
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Biswal, S., Wasnik, V. Accuracy in readout of glutamate concentrations by neuronal cells. Eur. Phys. J. E 46, 30 (2023). https://doi.org/10.1140/epje/s10189-023-00287-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/s10189-023-00287-6