Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Accuracy in readout of glutamate concentrations by neuronal cells

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Glutamate and glycine are important neurotransmitters in the brain. An action potential propagating in the terminal of a presynaptic neuron causes the release of glutamate and glycine in the synapse by vesicles fusing with the cell membrane, which then activate various receptors on the cell membrane of the post-synaptic neuron. Entry of Ca\(^{2+}\) through the activated NMDA receptors leads to a host of cellular processes of which long-term potentiation is of crucial importance because it is widely considered to be one of the major mechanisms behind learning and memory. By analysing the readout of glutamate concentration by the post-synaptic neurons during Ca\(^{2+}\) signaling, we find that the average receptor density in hippocampal neurons has evolved to allow for accurate measurement of the glutamate concentration in the synaptic cleft.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data associated with this manuscript.]

References

  1. H. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. 100(9), 5449–5454 (2003)

    Article  ADS  Google Scholar 

  2. R.G. Endres, N.S. Wingreen, Maximum likelihood and the single receptor. Phys. Rev. Lett. 103(15), 158101 (2009)

    Article  ADS  Google Scholar 

  3. F. Rieke, D.A. Baylor, Single-photon detection by rod cells of the retina. Rev. Mod. Phys. 70(3), 1027 (1998)

    Article  ADS  Google Scholar 

  4. J.E. Segall, Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. 90(18), 8332–8336 (1993)

    Article  ADS  Google Scholar 

  5. W.J. Rappel, H. Levine, Receptor noise limitations on chemotactic sensing. Proc. Natl. Acad. Sci. 105(49), 19270–19275 (2008)

    Article  ADS  Google Scholar 

  6. M. Ueda, T. Shibata, Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys. J . 93(1), 11–20 (2007)

    Article  Google Scholar 

  7. H.C. Berg, E.M. Purcell, Physics of chemoreception. Biophys. J. 20(2), 193–219 (1977)

    Article  ADS  Google Scholar 

  8. W. Bialek, S. Setayeshgar, Physical limits to biochemical signaling. Proc. Natl. Acad. Sci. 102(29), 10040–10045 (2005)

    Article  ADS  Google Scholar 

  9. K. Wang, W.J. Rappel, R. Kerr, H. Levine, Quantifying noise levels of intercellular signals. Phys. Rev. E 75(6), 061905 (2007)

    Article  ADS  Google Scholar 

  10. S. Fancher, A. Mugler, Fundamental limits to collective concentration sensing in cell populations. Phys. Rev. Lett. 118(7), 078101 (2017)

    Article  ADS  Google Scholar 

  11. T. Mora, N.S. Wingreen, Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104(24), 248101 (2010)

    Article  ADS  Google Scholar 

  12. B. Hu, W. Chen, W.J. Rappel, H. Levine, Physical limits on cellular sensing of spatial gradients. Phys. Rev. Lett. 105(4), 048104 (2010)

  13. V. Wasnik, Limitations on concentration measurements and gradient discerning times in cellular systems. Phys. Rev. E 105(3), 034410 (2022)

    Article  ADS  Google Scholar 

  14. R.G. Endres, N.S. Wingreen, Accuracy of direct gradient sensing by single cells. Proc. Natl. Acad. Sci. 105(41), 15749–15754 (2008)

    Article  ADS  Google Scholar 

  15. A. Mugler, A. Levchenko, I. Nemenman, Limits to the precision of gradient sensing with spatial communication and temporal integration. Proc. Natl. Acad. Sci. 113(6), E689–E695 (2016)

    Article  ADS  Google Scholar 

  16. D. Ellison, A. Mugler, M.D. Brennan, S.H. Lee, R.J. Huebner, E.R. Shamir, L.A. Woo, J. Kim, P. Amar, I. Nemenman, A.J. Ewald, A. Levchenko, Proc. Natl. Acad. Sci. U. S. A. 113, E679 (2016)

    Article  ADS  Google Scholar 

  17. B.W. Andrews, P.A. Iglesias, PLoS Comput. Biol. 3, e153 (2007)

    Article  ADS  Google Scholar 

  18. B. Hu, W. Chen, W.-J. Rappel, H. Levine, Phys. Rev. Lett. 105, 048104 (2010)

    Article  ADS  Google Scholar 

  19. F. Tostevin, P.R. ten Wolde, M. Howard, PLoS Comput. Biol. 3, e78 (2007)

    Article  ADS  Google Scholar 

  20. J.W. Murrough, C.G. Abdallah, S.J. Mathew, Targeting glutamate signalling in depression: progress and prospects. Nat. Rev. Drug Discov. 16(7), 472–486 (2017)

    Article  Google Scholar 

  21. K.M. Franks, T.M. Bartol, T.J. Sejnowski, A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys. J. 83, 2333–2348 (2002)

    Article  ADS  Google Scholar 

  22. T. Budisantoso, H. Harada, N. Kamasawa, Y. Fukazawa, R. Shigemoto, K. Matsui, Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of Held. J Physiol. 591(1), 219–39 (2013). https://doi.org/10.1113/jphysiol.2012.241398. (Epub 2012 Oct 15. PMID: 23070699; PMCID: PMC3630782)

    Article  Google Scholar 

  23. W.R. Holmes, Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys. J. 69(5), 1734–1747 (1995)

    Article  ADS  Google Scholar 

  24. N. Riveros, J. Fiedler, N. Lagos, C. Munoz, F. Orrego, Glutamate in rat brain cortex synaptic vesicles: influence of the vesicle isolation procedure. Brain Res. 386, 405–408 (1986)

    Article  Google Scholar 

  25. T.A. Ryan, H. Reuter, B. Wendland, F.E. Schweizer, R.W. Tsien, S.J. Smith, The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11(4), 713–724 (1993). (ISSN 0896-6273)

    Article  Google Scholar 

  26. J.W. Johnson, P. Ascher, Equilibrium and kinetic study of glycine action on the N-methyl-D-aspartate receptor in cultured mouse brain neurons. J Physiol. 455, 339–65 (1992). https://doi.org/10.1113/jphysiol.1992.sp019305. (PMID: 1484357; PMCID: PMC1175648)

    Article  Google Scholar 

  27. M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000)

    Article  Google Scholar 

  28. J.J. Saucerman, D.M. Bers, Calmodulin mediates differential sensitivity of CaMKII and calcineurin to local Ca\(^2+\) in cardiac myocytes. Biophys. J . 95(10), 4597–4612 (2008)

    Article  Google Scholar 

  29. Y. Timofeeva, K. Volynski, Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation. Front. Cell. Neurosci. 9, 239 (2015)

    Article  Google Scholar 

  30. D.X. Keller, K.M. Franks, T.M. Bartol Jr., T.J. Sejnowski, Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS ONE 3(4), e2045 (2008)

    Article  ADS  Google Scholar 

  31. J.R. Cottrell, G.R. Dube, C. Egles, G. Liu, Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J. Neurophysiol. 84(3), 1573–1587 (2000)

    Article  Google Scholar 

  32. V.H. Wasnik, P. Lipp, K. Kruse, Accuracy of position determination in Ca\(^2+\) signaling. Phys. Rev. E 100(2), 022401 (2019)

    Article  ADS  Google Scholar 

  33. V.H. Wasnik, P. Lipp, K. Kruse, Positional information readout in Ca\(^2+\) signaling. Phys. Rev. Lett. 123(5), 058102 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

We acknowledge funding from SERB Grant No: EEQ/2021/000006.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Vaibhav Wasnik.

Appendix A

Appendix A

We derive how Eq. 15 is got in this appendix. We have

$$\begin{aligned} \langle C_\textrm{Pr} \rangle _n= & {} \frac{1}{(kc)^n} \sum _{\textrm{Permutate}:\tilde{t}_1,\tilde{t}_3,\tilde{t}_5,\tilde{t}_7} \int _{\tilde{t}_1< \tilde{t}_3<\tilde{t}_5<\tilde{t}_7< kcT} d\tilde{t}_1 d\tilde{t}_3 d\tilde{t}_5 d\tilde{t}_7 \nonumber \\{} & {} \times e^{- \tilde{t}_1} e^{- \tilde{t}_3} e^{- \tilde{t}_5} e^{- \tilde{t}_7} C(kc T-\tilde{t}_7)^n\nonumber \\= & {} \frac{4! C}{6 (kc)^n} \int _0^{kcT} e^{ -\tilde{t}_7 } \left( 1-e^{ -\tilde{t}_7 } \right) ^3(kc T-\tilde{t}_7)^n dt_7\nonumber \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} e^{ -kcT x} \left( 1-e^{ -kcT x } \right) ^3(1-x)^n dx \nonumber \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} e^{ -kcT } e^{ kcT y } \left( 1-e^{ -kcT }e^{ kcT y } \right) ^3y^n dy \nonumber \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} e^{ kcT (y-1) } \left( 1-e^{ kcT (y-1) } \right) ^3y^n dy \nonumber \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} e^{ kcT (y-1) } \left( 1-e^{ 3kcT (y-1) }\right. \nonumber \\{} & {} \left. -3e^{ kcT (y-1)}+3e^{ 2 kcT (y-1)}\right) y^n dy \nonumber \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} \left( e^{ kcT (y-1) } -e^{ 4kcT (y-1) }\right. \nonumber \\{} & {} \left. -3e^{ 2kcT (y-1)}+3e^{ 3 kcT (y-1)} \right) y^n dy \end{aligned}$$
(A1)

Now up to \(\mathcal {O}((kcT)^3)\)

$$\begin{aligned}{} & {} e^{kcT(y-1)}{=}1{+}kcT(y{-}1){+}\frac{(kcT(y{-}1))^2}{2!}{+}\frac{(kcT(y{-}1))^3}{3!} \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} -e^{4kcT(y-1)}=-1-4kcT(y-1)-\frac{(4kcT(y-1))^2}{2!}\nonumber \\{} & {} \qquad -\frac{(4kcT(y-1))^3}{3!} \end{aligned}$$
(A3)
$$\begin{aligned}{} & {} -3e^{2kcT(y-1)}=-3-6kcT(y-1)-3\frac{(2kcT(y-1))^2}{2!}\nonumber \\{} & {} \qquad -3\frac{(2kcT(y-1))^3}{3!} \end{aligned}$$
(A4)
$$\begin{aligned}{} & {} 3e^{3kcT(y-1)}=3+9kcT(y-1)+3\frac{(3kcT(y-1))^2}{2!}\nonumber \\{} & {} \qquad +3\frac{(3kcT(y-1))^3}{3!} \end{aligned}$$
(A5)

Adding the above four equations gives

$$\begin{aligned}{} & {} \left( e^{ kcT (y-1) } -e^{ 4kcT (y-1) }-3e^{ 2kcT (y-1)}+3e^{ 3 kcT (y-1)} \right) =\\{} & {} \qquad (1-1-3+3)+kcT(y-1)(1-4-6+9)\\{} & {} \qquad +\frac{(kcT(y-1))^2}{2!}(1-16-12+27)\\{} & {} \qquad +\frac{(kcT(y-1))^3}{3!}(1-64-24+81)\\{} & {} \quad = -(kcT(y-1))^3\\{} & {} \quad = (kcT(1-y))^3 \end{aligned}$$

Hence,

$$\begin{aligned} \langle C_\textrm{Pr} \rangle _n= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} \left( e^{ kcT (y-1) } -e^{ 4kcT (y-1) }\right. \\{} & {} \left. -3e^{ 2kcT(y-1)}+3e^{ 3 kcT (y-1)} \right) y^n dy \\= & {} \frac{4!C (kcT)^{n+1}}{6(kc)^n} \int _0^{1} (kcT(1-y))^3 * y^n dy \\= & {} \frac{4!C (kcT)^{n+4}}{6(kc)^n} \int _0^{1} (1-y^3-3y+3y^2) * y^{n} dy, \\ kcT&<<&1\\= & {} \frac{4!C (kcT)^{n+4}}{6(kc)^n}\left( \frac{1}{n+1}-\frac{1}{n+4}-\frac{3}{n+2}+\frac{3}{n+3}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{6(kc)^n}\left( \frac{n+4-n-1}{(n+1)(n+4)}+\frac{-3n-9+3n+6}{(n+2)(n+3)}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{6(kc)^n}\left( \frac{3}{(n+1)(n+4)}-\frac{3}{(n+2)(n+3)}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{2(kc)^n}\left( \frac{1}{(n+1)(n+4)}-\frac{1}{(n+2)(n+3)}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{2(kc)^n}\left( \frac{(n+2)(n+3)-(n+1)(n+4)}{(n+1)(n+4)(n+2)(n+3)}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{2(kc)^n}\left( \frac{n^2+5n+6-n^2-5n-4}{(n+1)(n+4)(n+2)(n+3)}\right) \\= & {} \frac{4!C (kcT)^{n+4}}{(kc)^n(n+1)(n+2)(n+3)(n+4)}\\ \end{aligned}$$

Similarly,

$$\begin{aligned} \langle C_\textrm{Pr}^2 \rangle _n{} & {} = \frac{4!C^2 (kcT)^{2n+4}}{(kc)^{2n}(2n+1)(2n+2)(2n+3)(2n+4)} \end{aligned}$$

Hence

$$\begin{aligned}{} & {} \frac{\sqrt{\langle C_\textrm{Pr}^2 \rangle _n -\langle C_\textrm{Pr} \rangle ^2_n }}{c\frac{d \langle C_\textrm{Pr} \rangle _n}{dc}}=\frac{C*(kcT)^{n+2}}{kc^n} \\{} & {} \qquad \sqrt{ \frac{4!}{(2n+1)(2n+2)(2n+3)(2n+4)}-\frac{4!*4!(kcT)^{4}}{(n+1)^2(n+2)^2(n+3)^2(n+4)^2}}*\\{} & {} \qquad \frac{(kc)^n(n+1)(n+2)(n+3)(n+4)}{4*4!C(kcT)^{n+4}}\\{} & {} \quad =\sqrt{\frac{4!}{(2n+1)(2n+2)(2n+3)(2n+4)}-\frac{4!*4!(kcT)^{4}}{(n+1)^2(n+2)^2(n+3)^2(n+4)^2}}*\\{} & {} \qquad \frac{(n+1)(n+2)(n+3)(n+4)}{4*4!(kcT)^{2}}\\{} & {} \quad =\sqrt{ \frac{(n+1)^2(n+2)^2(n+3)^2(n+4)^2}{4!(2n+1)(2n+2)(2n+3)(2n+4)}-(kcT)^{4}}*\frac{1}{4(kcT)^{2}}\\{} & {} \quad = \frac{1}{4} \sqrt{ \frac{(n+1)^2(n+2)^2(n+3)^2(n+4)^2}{4!(kcT)^{4}(2n+1)(2n+2)(2n+3)(2n+4)}-1}\\{} & {} \quad = \frac{1}{4} \sqrt{ \frac{(n+1)(n+2)(n+3)^2(n+4)^2}{4!4(kcT)^{4}(2n+1)(2n+3)}-1} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, S., Wasnik, V. Accuracy in readout of glutamate concentrations by neuronal cells. Eur. Phys. J. E 46, 30 (2023). https://doi.org/10.1140/epje/s10189-023-00287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00287-6