Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article

Quantile maximum likelihood estimation of response time distributions

  • Notes and Comment
  • Published: June 2002
  • Volume 9, pages 394–401, (2002)
  • Cite this article
Download PDF
Psychonomic Bulletin & Review Aims and scope Submit manuscript
Quantile maximum likelihood estimation of response time distributions
Download PDF
  • Andrew Heathcote1,
  • Scott Brown1 &
  • D. J. K. Mewhort2 
  • 3991 Accesses

  • 211 Citations

  • 8 Altmetric

  • Explore all metrics

Abstract

Queen’s University, Kingston, Ontario, Canada We introduce and evaluate via a Monte Carlo study a robust new estimation technique that fits distribution functions to grouped response time (RT) data, where the grouping is determined by sample quantiles. The new estimator, quantile maximum likelihood (QML), is more efficient and less biased than the best alternative estimation technique when fitting the commonly used ex-Gaussian distribution. Limitations of the Monte Carlo results are discussed and guidance provided for the practical application of the new technique. Because QML estimation can be computationally costly, we make fast open source code for fitting available that can be easily modified

Article PDF

Download to read the full article text

Similar content being viewed by others

Random Effects Multinomial Processing Tree Models: A Maximum Likelihood Approach

Article Open access 29 May 2023

A Tutorial on Quantile Estimation via Monte Carlo

Chapter © 2020

Some Novel Aspects of Quantile Regression: Local Stationarity, Random Forests, and Optimal Transportation

Chapter © 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Applied Statistics
  • Non-parametric Inference
  • Quantitative Economics
  • Quantitative Psychology
  • Statistical Theory and Methods
  • Statistics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Andrews, S., &Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment?Journal of Experimental Psychology: Human Perception & Performance,27, 514–544.

    Google Scholar 

  • Balota, D. A., &Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General,128, 32–55.

    Article  Google Scholar 

  • Bassett, G., &Koenker, R. (1978). Asymptotic theory of least absolute error regression.Journal of the American Statistical Association,73, 618–622.

    Article  Google Scholar 

  • Brown, S., & Heathcote, A. (2001).QMLE: Fast, robust and efficient estimation of distribution functions based on quantiles. Manuscript submitted for publication.

  • Cleveland, W. S. (1985).The elements of graphing data. Monterey, CA: Wadsworth.

    Google Scholar 

  • Davison, A. C., &Hinkley, D. V. (1997).Bootstrap methods and their application. New York: Cambridge University Press.

    Google Scholar 

  • Edwards, A. W. F. (1972).Likelihood. London: Cambridge University Press.

    Google Scholar 

  • Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavioral Research Methods, Instruments, & Computers,28, 427–445.

    Article  Google Scholar 

  • Heathcote, A., Popiel, S. J., &Mewhort, D. J. K. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin,109, 340–347.

    Article  Google Scholar 

  • Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 598–615.

    Article  Google Scholar 

  • Hunter, D. R., &Lange, K. (2000). Quantile regression via an MM algorithm.Journal of Computational & Graphical Statistics,9, 60–77.

    Article  Google Scholar 

  • Kulldorff, G. (1961).Estimation from grouped and partially grouped samples. Wiley: New York.

    Google Scholar 

  • Leth-Steensen, C., Elbaz, Z. K., &Douglas, V. I. (2000). Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach.Acta Psychologica,104, 167–190.

    Article  PubMed  Google Scholar 

  • McGill, W. J. (1963). Stochastic latency mechanisms. In R.D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology (pp. 193–199). New York: Wiley.

    Google Scholar 

  • Mewhort, D. J. K., Braun, J. G., &Heathcote, A. (1992). Response time distributions and the Stroop task: A test of the Cohen, Dunbar, and McClelland (1990) model.Journal of Experimental Psychology: Human Perception & Performance,18, 872–882.

    Article  Google Scholar 

  • Morgenthaler, S., &Tukey, J. W. (2000). Fitting quantiles: Doubling, HR, HQ, and HHH distributions.Journal of Computational & Graphical Statistics,9, 180–195.

    Article  Google Scholar 

  • Pollard, A., Mewhort, D. J. K., &Weaver, D. F. (2000).High performance computing systems and applications. Boston: Kluwer.

    Google Scholar 

  • Press W. H., Teukolsky, S. A., Vetterling, W. T., &Flannery, B. P. (1992). Numerical recipes in FORTRAN: The art of scientific computing (2nd ed). New York: Cambridge University Press.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review,85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1979). Group reaction time distributions and the analysis of distribution statistics.Psychological Bulletin,86, 446–461.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., &Murdock, B. B. (1976). Retrieval processes in recognition memory.Psychological Review,83, 190–214.

    Article  Google Scholar 

  • Roher, D., &Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall.Memory & Cognition,22, 511–524.

    Article  Google Scholar 

  • Rousseeuw, P. J., &Leroy, A. M. (1987).Robust regression and outlier detection. New York: Wiley.

    Book  Google Scholar 

  • Smith, D. G., &Mewhort, D. J. K. (1998). The distribution of latencies constrains theories of decision time: A test of the random-walk model using numeric comparison.Australian Journal of Psychology,50, 149–156.

    Article  Google Scholar 

  • Spieler, D. H., Balota, D. A., &Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type.Journal of Experimental Psychology: Human Perception & Performance,22, 461–479.

    Article  Google Scholar 

  • Tanner, M. A. (1993).Tools for statistical inference. New York: Springer-Verlag.

    Google Scholar 

  • Thomas, E. A. C., &Ross, B. H. (1980). On appropriate procedures for combining probability distributions within the same family.Journal of Mathematical Psychology,21, 136–152.

    Article  Google Scholar 

  • Ulrich, R., &Miller, J. (1994). Effects of outlier exclusion on reaction time analysis.Journal of Experimental Psychology: General,123, 34–80.

    Article  Google Scholar 

  • Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin & Review,7, 424–465.

    Article  Google Scholar 

  • Van Zandt, T., Colonius, H., &Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin & Review,7, 208–256.

    Article  Google Scholar 

  • Wand, M. P., &Jones, M. C. (1995).Kernel smoothing. London: Chapman & Hall.

    Google Scholar 

  • Wixted, J. T., &Roher, D. (1993). Proactive interference and the dynamics of free recall.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 1024–1039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Behavioural Science, University of Newcastle, 2308, Callaghan, NSW, Australia

    Andrew Heathcote & Scott Brown

  2. Queen’s Univsersity, Kingston, Ontario, Canada

    D. J. K. Mewhort

Authors
  1. Andrew Heathcote
    View author publications

    Search author on:PubMed Google Scholar

  2. Scott Brown
    View author publications

    Search author on:PubMed Google Scholar

  3. D. J. K. Mewhort
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Andrew Heathcote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heathcote, A., Brown, S. & Mewhort, D.J.K. Quantile maximum likelihood estimation of response time distributions. Psychonomic Bulletin & Review 9, 394–401 (2002). https://doi.org/10.3758/BF03196299

Download citation

  • Received: 08 August 2000

  • Accepted: 09 May 2001

  • Issue date: June 2002

  • DOI: https://doi.org/10.3758/BF03196299

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Response Time
  • Monte Carlo Study
  • Response Time Distribution
  • Response Time Data
  • Monte Carlo Result
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

132.145.61.108

Not affiliated

Springer Nature

© 2025 Springer Nature