Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
14 Legendre and Related FunctionsReal Arguments

§14.6 Integer Order

Contents
  1. §14.6(i) Nonnegative Integer Orders
  2. §14.6(ii) Negative Integer Orders

§14.6(i) Nonnegative Integer Orders

For m=0,1,2,,

14.6.1 𝖯νm(x) =(1)m(1x2)m/2dm𝖯ν(x)dxm,
14.6.2 𝖰νm(x) =(1)m(1x2)m/2dm𝖰ν(x)dxm.
14.6.3 Pνm(x) =(x21)m/2dmPν(x)dxm,
14.6.4 Qνm(x) =(x21)m/2dmQν(x)dxm,
14.6.5 (ν+1)m𝑸νm(x)=(1)m(x21)m/2dm𝑸ν(x)dxm.

§14.6(ii) Negative Integer Orders

For m=1,2,3,,

14.6.6 𝖯νm(x) =(1x2)m/2x1x1𝖯ν(x)(dx)m.
14.6.7 Pνm(x) =(x21)m/21x1xPν(x)(dx)m,
14.6.8 Qνm(x) =(1)m(x21)m/2xxQν(x)(dx)m.

For connections between positive and negative integer orders see (14.9.3), (14.9.4), and (14.9.13). For generalizations see Cohl and Costas-Santos (2020).