Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
13 Confluent Hypergeometric FunctionsKummer Functions

§13.3 Recurrence Relations and Derivatives

Contents
  1. §13.3(i) Recurrence Relations
  2. §13.3(ii) Differentiation Formulas

§13.3(i) Recurrence Relations

13.3.1 (ba)M(a1,b,z)+(2ab+z)M(a,b,z)aM(a+1,b,z) =0,
13.3.2 b(b1)M(a,b1,z)+b(1bz)M(a,b,z)+z(ba)M(a,b+1,z) =0,
13.3.3 (ab+1)M(a,b,z)aM(a+1,b,z)+(b1)M(a,b1,z) =0,
13.3.4 bM(a,b,z)bM(a1,b,z)zM(a,b+1,z) =0,
13.3.5 b(a+z)M(a,b,z)+z(ab)M(a,b+1,z)abM(a+1,b,z) =0,
13.3.6 (a1+z)M(a,b,z)+(ba)M(a1,b,z)+(1b)M(a,b1,z) =0.
13.3.7 U(a1,b,z)+(b2az)U(a,b,z)+a(ab+1)U(a+1,b,z) =0,
13.3.8 (ba1)U(a,b1,z)+(1bz)U(a,b,z)+zU(a,b+1,z) =0,
13.3.9 U(a,b,z)aU(a+1,b,z)U(a,b1,z) =0,
13.3.10 (ba)U(a,b,z)+U(a1,b,z)zU(a,b+1,z) =0,
13.3.11 (a+z)U(a,b,z)zU(a,b+1,z)+a(ba1)U(a+1,b,z) =0,
13.3.12 (a1+z)U(a,b,z)U(a1,b,z)+(ab+1)U(a,b1,z) =0.

Kummer’s differential equation (13.2.1) is equivalent to

13.3.13 (a+1)zM(a+2,b+2,z)+(b+1)(bz)M(a+1,b+1,z)b(b+1)M(a,b,z)=0,

and

13.3.14 (a+1)zU(a+2,b+2,z)+(zb)U(a+1,b+1,z)U(a,b,z)=0.

§13.3(ii) Differentiation Formulas

13.3.15 ddzM(a,b,z)=abM(a+1,b+1,z),
13.3.16 dndznM(a,b,z)=(a)n(b)nM(a+n,b+n,z),
13.3.17 (zddzz)n(za1M(a,b,z))=(a)nza+n1M(a+n,b,z),
13.3.18 dndzn(zb1M(a,b,z))=(bn)nzbn1M(a,bn,z),
13.3.19 (zddzz)n(zba1ezM(a,b,z))=(ba)nzba+n1ezM(an,b,z),
13.3.20 dndzn(ezM(a,b,z))=(1)n(ba)n(b)nezM(a,b+n,z),
13.3.21 dndzn(zb1ezM(a,b,z))=(bn)nzbn1ezM(an,bn,z).
13.3.22 ddzU(a,b,z)=aU(a+1,b+1,z),
13.3.23 dndznU(a,b,z)=(1)n(a)nU(a+n,b+n,z),
13.3.24 (zddzz)n(za1U(a,b,z))=(a)n(ab+1)nza+n1U(a+n,b,z),
13.3.25 dndzn(zb1U(a,b,z))=(1)n(ab+1)nzbn1U(a,bn,z),
13.3.26 (zddzz)n(zba1ezU(a,b,z))=(1)nzba+n1ezU(an,b,z),
13.3.27 dndzn(ezU(a,b,z))=(1)nezU(a,b+n,z),
13.3.28 dndzn(zb1ezU(a,b,z))=(1)nzbn1ezU(an,bn,z).

Other versions of several of the identities in this subsection can be constructed with the aid of the operator identity

13.3.29 (zddzz)n=zndndznzn,
n=1,2,3,.