Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.13 Integrals

Contents
  1. §24.13(i) Bernoulli Polynomials
  2. §24.13(ii) Euler Polynomials
  3. §24.13(iii) Compendia

§24.13(i) Bernoulli Polynomials

24.13.1 Bn(t)dt =Bn+1(t)n+1+const.,
24.13.2 xx+1Bn(t)dt =xn,
n=1,2,,
24.13.3 xx+(1/2)Bn(t)dt =En(2x)2n+1,
24.13.4 01/2Bn(t)dt =12n+12nBn+1n+1,
24.13.5 1/43/4Bn(t)dt =En22n+1.

For m,n=1,2,,

24.13.6 01Bn(t)Bm(t)dt=(1)n1m!n!(m+n)!Bm+n.

For integrals of the form 0xBn(t)Bm(t)dt and 0xBn(t)Bm(t)Bk(t)dt see Agoh and Dilcher (2011).

§24.13(ii) Euler Polynomials

24.13.7 En(t)dt=En+1(t)n+1+const.,
24.13.8 01En(t)dt=2En+1(0)n+1=4(2n+21)(n+1)(n+2)Bn+2,
24.13.9 01/2E2n(t)dt=E2n+1(0)2n+1=2(22n+21)B2n+2(2n+1)(2n+2),
24.13.10 01/2E2n1(t)dt=E2nn22n+1,
n=1,2,.

For m,n=1,2,,

24.13.11 01En(t)Em(t)dt=(1)n4(2m+n+21)m!n!(m+n+2)!Bm+n+2.

§24.13(iii) Compendia

For Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). For other integrals see Prudnikov et al. (1990, pp. 55–57).