Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.8 Series Expansions

Contents
  1. §24.8(i) Fourier Series
  2. §24.8(ii) Other Series

§24.8(i) Fourier Series

If n=1,2, and 0x1, then

24.8.1 B2n(x) =(1)n+12(2n)!(2π)2nk=1cos(2πkx)k2n,
24.8.2 B2n+1(x) =(1)n+12(2n+1)!(2π)2n+1k=1sin(2πkx)k2n+1.

The second expansion holds also for n=0 and 0<x<1.

If n=1 with 0<x<1, or n=2,3, with 0x1, then

24.8.3 Bn(x)=n!(2πi)nk=k0e2πikxkn.

If n=1,2, and 0x1, then

24.8.4 E2n(x) =(1)n4(2n)!π2n+1k=0sin((2k+1)πx)(2k+1)2n+1,
24.8.5 E2n1(x) =(1)n4(2n1)!π2nk=0cos((2k+1)πx)(2k+1)2n.

§24.8(ii) Other Series

24.8.6 B4n+2 =(8n+4)k=1k4n+1e2πk1,
n=1,2,,
24.8.7 B2n =(1)n+14n22n1k=1k2n1eπk+(1)k+n,
n=2,3,.

Let αβ=π2. Then

24.8.8 B2n4n(αn(β)n)=αnk=1k2n1e2αk1(β)nk=1k2n1e2βk1,
n=2,3,.
24.8.9 E2n=(1)nk=1k2ncosh(12πk)4k=0(1)k(2k+1)2ne2π(2k+1)1,
n=1,2,.