Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
20 Theta FunctionsProperties

§20.5 Infinite Products and Related Results

Contents
  1. §20.5(i) Single Products
  2. §20.5(ii) Logarithmic Derivatives
  3. §20.5(iii) Double Products

§20.5(i) Single Products

20.5.1 θ1(z,q)=2q1/4sinzn=1(1q2n)(12q2ncos(2z)+q4n),
20.5.2 θ2(z,q)=2q1/4coszn=1(1q2n)(1+2q2ncos(2z)+q4n),
20.5.3 θ3(z,q)=n=1(1q2n)(1+2q2n1cos(2z)+q4n2),
20.5.4 θ4(z,q)=n=1(1q2n)(12q2n1cos(2z)+q4n2).
20.5.5 θ1(z|τ)=θ1(0|τ)sinzn=1sin(nπτ+z)sin(nπτz)sin2(nπτ),
20.5.6 θ2(z|τ)=θ2(0|τ)coszn=1cos(nπτ+z)cos(nπτz)cos2(nπτ),
20.5.7 θ3(z|τ)=θ3(0|τ)n=1cos((n12)πτ+z)cos((n12)πτz)cos2((n12)πτ),
20.5.8 θ4(z|τ)=θ4(0|τ)n=1sin((n12)πτ+z)sin((n12)πτz)sin2((n12)πτ).

Jacobi’s Triple Product

20.5.9 θ3(πz|τ)=n=p2nqn2=n=1(1q2n)(1+q2n1p2)(1+q2n1p2),

where p=eiπz, q=eiπτ.

§20.5(ii) Logarithmic Derivatives

When |z|<πτ,

20.5.10 θ1(z,q)θ1(z,q)cotz=4sin(2z)n=1q2n12q2ncos(2z)+q4n=4n=1q2n1q2nsin(2nz),
20.5.11 θ2(z,q)θ2(z,q)+tanz=4sin(2z)n=1q2n1+2q2ncos(2z)+q4n=4n=1(1)nq2n1q2nsin(2nz).

The left-hand sides of (20.5.10) and (20.5.11) are replaced by their limiting values when cotz or tanz are undefined.

When |z|<12πτ,

20.5.12 θ3(z,q)θ3(z,q)=4sin(2z)n=1q2n11+2q2n1cos(2z)+q4n2=4n=1(1)nqn1q2nsin(2nz),
20.5.13 θ4(z,q)θ4(z,q)=4sin(2z)n=1q2n112q2n1cos(2z)+q4n2=4n=1qn1q2nsin(2nz).

With the given conditions the infinite series in (20.5.10)–(20.5.13) converge absolutely and uniformly in compact sets in the z-plane.

§20.5(iii) Double Products

20.5.14 θ1(z|τ) =zθ1(0|τ)limNn=NNlimMm=M|m|+|n|0M(1+z(m+nτ)π),
20.5.15 θ2(z|τ) =θ2(0|τ)limNn=NNlimMm=1MM(1+z(m12+nτ)π),
20.5.16 θ3(z|τ) =θ3(0|τ)limNn=1NNlimMm=1MM(1+z(m12+(n12)τ)π),
20.5.17 θ4(z|τ) =θ4(0|τ)limNn=1NNlimMm=MM(1+z(m+(n12)τ)π).

These double products are not absolutely convergent; hence the order of the limits is important. The order shown is in accordance with the Eisenstein convention (Walker (1996, §0.3)).