Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
35 Functions of Matrix ArgumentProperties

§35.5 Bessel Functions of Matrix Argument

Contents
  1. §35.5(i) Definitions
  2. §35.5(ii) Properties
  3. §35.5(iii) Asymptotic Approximations

§35.5(i) Definitions

35.5.1 Aν(𝟎)=1Γm(ν+12(m+1)),
ν.
35.5.2 Aν(𝐓)=Aν(𝟎)k=0(1)kk!|κ|=k1[ν+12(m+1)]κZκ(𝐓),
ν, 𝐓𝓢.
35.5.3 Bν(𝐓)=𝛀etr((𝐓𝐗+𝐗1))|𝐗|ν12(m+1)d𝐗,
ν, 𝐓𝛀.

§35.5(ii) Properties

35.5.5 𝟎<𝐗<𝐓Aν1(𝐒1𝐗)|𝐗|ν1Aν2(𝐒2(𝐓𝐗))|𝐓𝐗|ν2d𝐗=|𝐓|ν1+ν2+12(m+1)Aν1+ν2+12(m+1)((𝐒1+𝐒2)𝐓),
νj, (νj)>1, j=1,2; 𝐒1,𝐒2𝓢; 𝐓𝛀.
35.5.6 Bν(𝐓)=|𝐓|νBν(𝐓),
ν, 𝐓𝛀.
35.5.7 𝛀Aν1(𝐓𝐗)Bν2(𝐒𝐗)|𝐗|ν1d𝐗=1Aν1+ν2(𝟎)|𝐒|ν2|𝐓+𝐒|(ν1+ν2+12(m+1)),
(ν1+ν2)>1; 𝐒,𝐓𝛀.
35.5.8 𝐎(m)etr(𝐒𝐇)d𝐇=A1/2(14𝐒𝐒T)A1/2(𝟎),
𝐒 arbitrary.

§35.5(iii) Asymptotic Approximations

For asymptotic approximations for Bessel functions of matrix argument, see Herz (1955) and Butler and Wood (2003).