An advanced Retrieval-Augmented Generation (RAG) system designed to enhance diagnostic reasoning from clinical notes. This project integrates LangChain, Bio_ClinicalBERT, and FAISS for semantic retrieval, while leveraging LLaMA 3 (via Groq API) for context-aware medical text generation.
- 🩺 Clinical Reasoning Support — Generates diagnostic insights from unstructured medical notes.
- 🔍 Semantic Retrieval — Uses Bio_ClinicalBERT embeddings and FAISS for efficient context retrieval.
- 🤖 LLM Integration — Employs LLaMA 3 (Groq API) for fast and accurate clinical reasoning.
- 💬 Interactive Interface — Built with Streamlit for smooth and intuitive user interaction.
- ⚡ Real-Time Inference — Utilizes Groq’s ultra-fast inference engine for near-instant responses.
User Query → Text Embedding (Bio_ClinicalBERT) →
Vector Search (FAISS) → Context Retrieval →
Prompt Construction → LLaMA 3 (Groq API) → Diagnostic Response
- Language Model: LLaMA 3 (Groq API)
- Framework: LangChain
- Embeddings: Bio_ClinicalBERT
- Vector Database: FAISS
- Frontend: Streamlit
- Language: Python
-
Clone the repository
git clone https://github.com/Muavia1/RAG-for-Diagnostic-Reasoning-of-Clinical-Notes.git cd RAG-for-Diagnostic-Reasoning-of-Clinical-Notes -
Create and activate a virtual environment
python -m venv venv source venv/bin/activate # for Linux/Mac venv\Scripts\activate # for Windows
-
Install dependencies
pip install -r requirements.txt
-
Add your API keys Create a
.envfile and include your keys:GROQ_API_KEY=your_groq_api_key
-
Run the Streamlit app
streamlit run app.py
Upload or input clinical notes describing a patient’s symptoms. The system retrieves relevant literature and generates evidence-based diagnostic reasoning, assisting clinicians in decision-making.
LangChain · LLaMA 3 · FAISS · Bio_ClinicalBERT · Groq API · Streamlit · Retrieval-Augmented Generation · Natural Language Processing · Machine Learning · Clinical AI
- Integrate PubMed and MIMIC-III datasets for richer medical context.
- Add evaluation metrics for clinical reasoning accuracy.
- Support multilingual clinical note processing.
Muavia Ijaz