Thanks to visit codestin.com
Credit goes to github.com

Skip to content

PaddlePaddle implementation for "ECO: Efficient Convolutional Network for Online Video Understanding", ECCV 2018

License

Notifications You must be signed in to change notification settings

Nullius-2020/ECO-pp

Repository files navigation

This is a fork of https://github.com/mzolfaghari/ECO-pytorch's PaddlePaddle implementation for the paper:

" ECO: Efficient Convolutional Network for Online Video Understanding, European Conference on Computer Vision (ECCV), 2018." By Mohammadreza Zolfaghari, Kamaljeet Singh, Thomas Brox
NOTE

Environment:

  • Python 3.7
  • PaddlePaddle 1.8.0

Clone this repo

git clone https://github.com/Nullius-2020/ECO-pp

Generate dataset lists

python gen_dataset_lists.py <ucf101> <dataset_frames_root_path>

e.g. python gen_dataset_lists.py ucf101 ~/dataset/ucf101/

The dataset should be organized as:
<dataset_frames_root_path>/<video_name>/<frame_images>

Training

For finetuning on UCF101 use the following command:

sh run_demo_ECO_Full.sh local

### NOTE
* If you want to train your model from scratch change the config as following:
```bash
    --pretrained_parts scratch
  • configurations explained in "opts.py"

Thanks

Citation

If you use this code or ideas from the paper for your research, please cite this paper:

@inproceedings{ECO_eccv18,
author={Mohammadreza Zolfaghari and
               Kamaljeet Singh and
               Thomas Brox},
title={{ECO:} Efficient Convolutional Network for Online Video Understanding},	       
booktitle={ECCV},
year={2018}
}

About

PaddlePaddle implementation for "ECO: Efficient Convolutional Network for Online Video Understanding", ECCV 2018

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published