This is a fork of https://github.com/mzolfaghari/ECO-pytorch's PaddlePaddle implementation for the paper:
" ECO: Efficient Convolutional Network for Online Video Understanding, European Conference on Computer Vision (ECCV), 2018." By Mohammadreza Zolfaghari, Kamaljeet Singh, Thomas Brox
- This only test ECO-Full model for dataset UCF101
- You can try it on AIStudio project https://aistudio.baidu.com/aistudio/projectdetail/698987
- Python 3.7
- PaddlePaddle 1.8.0
git clone https://github.com/Nullius-2020/ECO-pp
python gen_dataset_lists.py <ucf101> <dataset_frames_root_path>e.g. python gen_dataset_lists.py ucf101 ~/dataset/ucf101/
The dataset should be organized as:
<dataset_frames_root_path>/<video_name>/<frame_images>
For finetuning on UCF101 use the following command:
sh run_demo_ECO_Full.sh local
### NOTE
* If you want to train your model from scratch change the config as following:
```bash
--pretrained_parts scratch
- configurations explained in "opts.py"
- This project originated from the course https://aistudio.baidu.com/aistudio/education/group/info/1340
If you use this code or ideas from the paper for your research, please cite this paper:
@inproceedings{ECO_eccv18,
author={Mohammadreza Zolfaghari and
Kamaljeet Singh and
Thomas Brox},
title={{ECO:} Efficient Convolutional Network for Online Video Understanding},
booktitle={ECCV},
year={2018}
}