Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Necolizer/STAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STAR: Skeletal Token Alignment and Rearrangement for Interaction Recognition

Here's the official implementation of STAR: Skeletal Token Alignment and Rearrangement for Interaction Recognition accepted for publication in IEEE Transactions on Multimedia in 2025.

News

  • [2025-08] STAR has been accepted for publication in IEEE Transactions on Multimedia.

Prerequisites

To clone the main branch, use the following git command:

git clone -b main https://github.com/Necolizer/STAR.git
pip install -r requirements.txt 

Datasets

Chico

Download the 3D skeleton data and the external RGB videos from this link. Utils are provided in their repo Chico.

HARPER

Download the 30Hz 3D skeleton data and the external RGB videos from this link. You could download the 3D skeleton data using the script provided in HARPER:

PYTHONPATH=. python download/harper_only_3d_downloader.py --dst_folder ./data

This will generate the following tree structure:

data
├── harper_3d_120
│   ├── test
│   │   ├── subj_act_120hz.pkl
│   │   ├── ...
│   │   └── subj_act_120hz.pkl
│   └── train
│       ├── subj_act_120hz.pkl
│       ├── ...
│       └── subj_act_120hz.pkl
└── harper_3d_30
    ├── test
    │   ├── subj_act_30hz.pkl
    │   ├── ...
    │   └── subj_act_30hz.pkl
    └── train
        ├── subj_act_30hz.pkl
        ├── ...
        └── subj_act_30hz.pkl

NTU Mutual 11 & 26

NTU Mutual 11 & 26 are subsets of the NTU RGB+D and the NTU RGB+D 120 dataset, specifically designed for interaction recognition tasks.

DownLoad

  1. Request dataset here: https://rose1.ntu.edu.sg/dataset/actionRecognition
  2. Download the skeleton-only datasets:
    1. nturgbd_skeletons_s001_to_s017.zip (NTU RGB+D 60)
    2. nturgbd_skeletons_s018_to_s032.zip (NTU RGB+D 120)
    3. Extract above files to ./data/nturgbd_raw
  3. Download the RGB videos

Directory Structure

Put downloaded data into the following directory structure:

- data/
  - ntu/
  - ntu120/
  - nturgbd_raw/
    - nturgb+d_skeletons/     # from `nturgbd_skeletons_s001_to_s017.zip`
      ...
    - nturgb+d_skeletons120/  # from `nturgbd_skeletons_s018_to_s032.zip`
      ...
    - rgb/
      ...

Generating Data

cd ./data/ntu120 # or cd ./data/ntu
# Get skeleton of each performer
python get_raw_skes_data.py
# Remove the bad skeleton 
python get_raw_denoised_data.py
# Transform the skeleton to the center of the first frame
python seq_transformation.py

Run the Code

First preprocess the RGB video frames using utils/FoI_[benchmarkName].py to get FoI regions. Then specify your path in the configurations.

Run the following command to start training and evaluation:

python main.py --config config/[benchmarkName]/[yourSetting].yaml

Checkpoints

Please stay tuned for updates.

Citation

If you find this work or code helpful in your research, please consider citing:

Please stay tuned for updates.

Acknowledgement

This project is built on top of the follows, please consider citing them if you find them useful:

About

[IEEE TMM'25] STAR: Skeletal Token Alignment and Rearrangement for Interaction Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published