Thanks to visit codestin.com
Credit goes to github.com

Skip to content

OwlbanGroup/.github

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

🧠 AI Dashboard - The Most Advanced AI System

A comprehensive, enterprise-grade AI dashboard integrating multiple AI platforms including OpenAI GPT-4, Google Cloud Vertex AI, Microsoft Azure OpenAI, AWS SageMaker, and Hugging Face models.

✨ Features

πŸ€– Multi-Platform AI Integration

  • OpenAI: GPT-4 chat, DALL-E 3 image generation
  • Google Cloud Vertex AI: Multimodal AI capabilities
  • Microsoft Azure OpenAI: Enterprise-grade cloud AI
  • AWS SageMaker: ML model training and deployment
  • Hugging Face: Text generation, image generation, code completion, sentiment analysis

πŸ›‘οΈ Enterprise Security & Performance

  • JWT-based authentication
  • Rate limiting and security headers
  • Redis caching for performance
  • MongoDB for persistent storage
  • Real-time WebSocket collaboration

πŸ“Š Advanced Analytics & Monitoring

  • Prometheus metrics collection
  • Real-time GPU monitoring (NVIDIA)
  • AI-powered analytics with TensorFlow.js
  • Docker & Kubernetes deployment ready

🎨 Modern UI/UX

  • Dark mode toggle
  • Internationalization support
  • Responsive design
  • Real-time updates

πŸš€ Quick Start

Prerequisites

  • Node.js 18+
  • MongoDB (optional, for user management)
  • Redis (optional, for caching)
  • NVIDIA GPU (optional, for GPU monitoring)

Installation

  1. Clone the repository

    git clone <repository-url>
    cd ai-dashboard
  2. Install dependencies

    npm install
  3. Set environment variables (create .env file)

    # Required API Keys
    OPENAI_API_KEY=your_openai_key
    HF_API_KEY=your_huggingface_key
    
    # Optional (for full functionality)
    AZURE_OPENAI_API_KEY=your_azure_key
    AZURE_OPENAI_ENDPOINT=your_azure_endpoint
    GOOGLE_CLOUD_PROJECT_ID=your_gcp_project
    AWS_ACCESS_KEY_ID=your_aws_key
    AWS_SECRET_ACCESS_KEY=your_aws_secret
    
    # NVIDIA Cloud Integration (for NGC services)
    NVIDIA_API_KEY=your_nvidia_ngc_api_key
    NVIDIA_ORG_ID=your_nvidia_org_id
    
    # Database & Cache
    MONGODB_URI=mongodb://localhost:27017/dashboard
    REDIS_URL=redis://localhost:6379
    
    # Security
    JWT_SECRET=your_jwt_secret

Running the Application

Development Mode

# Windows PowerShell
.\start-development.ps1

# Linux/macOS
npm run dev

Production Mode (Standard)

# Windows PowerShell
.\start-production.ps1

# Linux/macOS
./start-production.sh

Production Mode (Enhanced)

For advanced production deployments with health checks, backups, and monitoring:

# Windows PowerShell
.\start-production-enhanced.ps1

# Linux/macOS
./start-production-enhanced.sh

Enhanced Production Features:

  • βœ… Automatic health checks and startup validation
  • βœ… Environment and dependency verification
  • βœ… Automatic backups before deployment
  • βœ… Port conflict detection and resolution
  • βœ… PM2 ecosystem configuration
  • βœ… Comprehensive logging and monitoring
  • βœ… Old backup cleanup
  • βœ… Optional PM2 auto-startup setup

Enhanced Production Options:

# Create backup only
./start-production-enhanced.sh --backup

# Cleanup old backups
./start-production-enhanced.sh --cleanup

# Setup auto-startup on boot
./start-production-enhanced.sh --setup-startup

The application will be available at http://localhost:3000

πŸ“ Project Structure

ai-dashboard/
β”œβ”€β”€ app.js                    # Main Express server
β”œβ”€β”€ package.json              # Dependencies and scripts
β”œβ”€β”€ ecosystem.config.js       # PM2 process configuration
β”œβ”€β”€ start-production.sh       # Standard Linux/macOS production script
β”œβ”€β”€ start-production.ps1      # Standard Windows production script
β”œβ”€β”€ start-production-enhanced.sh    # Enhanced Linux/macOS production script
β”œβ”€β”€ start-production-enhanced.ps1   # Enhanced Windows production script
β”œβ”€β”€ start-development.ps1     # Windows development script
β”œβ”€β”€ Dockerfile                # Docker containerization
β”œβ”€β”€ docker-compose.yml        # Local development with Docker
β”œβ”€β”€ k8s/                      # Kubernetes deployment
β”‚   └── deployment.yaml
β”œβ”€β”€ logs/                     # Application logs directory
β”œβ”€β”€ backups/                  # Automatic backup storage
β”œβ”€β”€ tests/                    # Test suite
β”‚   └── e2e/                  # End-to-end tests
β”œβ”€β”€ .github/workflows/        # CI/CD pipelines
β”‚   └── ci-cd.yml
└── dashboard/                # Frontend assets
    β”œβ”€β”€ index.html           # Main dashboard
    β”œβ”€β”€ script.js            # Frontend logic
    β”œβ”€β”€ nvidia.js            # NVIDIA GPU integration
    β”œβ”€β”€ collaboration.js     # Real-time collaboration
    └── styles.css           # Styling

πŸ”§ API Endpoints

Authentication

  • POST /api/auth/register - User registration
  • POST /api/auth/login - User login

AI Services (Protected)

  • POST /api/ai/text-generation - Hugging Face text generation
  • POST /api/ai/image-generation - Stable Diffusion image generation
  • POST /api/ai/code-completion - Code completion
  • POST /api/ai/sentiment-analysis - Sentiment analysis
  • POST /api/ai/openai-chat - OpenAI GPT-4 chat
  • POST /api/ai/openai-image - OpenAI DALL-E 3 images
  • POST /api/ai/google-vertex - Google Cloud Vertex AI
  • POST /api/ai/azure-openai-chat - Azure OpenAI
  • POST /api/ai/aws-sagemaker - AWS SageMaker
  • POST /api/ai/rag-query - RAG-powered queries
  • POST /api/ai/fine-tune - Model fine-tuning

NVIDIA Cloud Services (Protected)

  • GET /api/nvidia/models - List available NVIDIA NGC models
  • POST /api/nvidia/inference - Run inference on NVIDIA cloud models
  • GET /api/nvidia/instances - List NVIDIA cloud instances
  • POST /api/nvidia/deploy - Deploy models to NVIDIA cloud
  • GET /api/nvidia/org - Get NVIDIA organization info

System Endpoints

  • GET /api/operations - Operations KPIs
  • GET /api/banking - Banking metrics
  • GET /api/profits - Revenue & Profits Analytics
  • GET /api/gpu - Local NVIDIA GPU metrics
  • GET /metrics - Prometheus metrics

Infrastructure

  • POST /api/docker/containers - Docker container management
  • POST /api/kubernetes/deploy - Kubernetes deployments

🐳 Docker Deployment

Local Development

docker-compose up -d

Production Deployment

# Build and run
docker build -t ai-dashboard .
docker run -d -p 3000:3000 --env-file .env ai-dashboard

☸️ Kubernetes Deployment

# Deploy to Kubernetes
kubectl apply -f k8s/deployment.yaml

# Check status
kubectl get pods
kubectl get services

πŸ“Š Monitoring

  • PM2: Process monitoring and management
  • Prometheus: Metrics collection at /metrics
  • Logs: Available via pm2 logs ai-dashboard

πŸ” Security Features

  • Helmet.js security headers
  • Express rate limiting
  • JWT token authentication
  • Input validation and sanitization
  • CORS protection

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run tests
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

For support and questions:

  • Create an issue in the repository
  • Check the logs: pm2 logs ai-dashboard
  • Monitor metrics: http://localhost:3000/metrics

Built with ❀️ for the future of AI-powered enterprise applications

About

Community Content for JPMC Repositories

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 58.5%
  • PowerShell 17.4%
  • JavaScript 16.9%
  • Shell 3.6%
  • Python 2.3%
  • CSS 1.3%