A comprehensive, enterprise-grade AI dashboard integrating multiple AI platforms including OpenAI GPT-4, Google Cloud Vertex AI, Microsoft Azure OpenAI, AWS SageMaker, and Hugging Face models.
- OpenAI: GPT-4 chat, DALL-E 3 image generation
- Google Cloud Vertex AI: Multimodal AI capabilities
- Microsoft Azure OpenAI: Enterprise-grade cloud AI
- AWS SageMaker: ML model training and deployment
- Hugging Face: Text generation, image generation, code completion, sentiment analysis
- JWT-based authentication
- Rate limiting and security headers
- Redis caching for performance
- MongoDB for persistent storage
- Real-time WebSocket collaboration
- Prometheus metrics collection
- Real-time GPU monitoring (NVIDIA)
- AI-powered analytics with TensorFlow.js
- Docker & Kubernetes deployment ready
- Dark mode toggle
- Internationalization support
- Responsive design
- Real-time updates
- Node.js 18+
- MongoDB (optional, for user management)
- Redis (optional, for caching)
- NVIDIA GPU (optional, for GPU monitoring)
-
Clone the repository
git clone <repository-url> cd ai-dashboard
-
Install dependencies
npm install
-
Set environment variables (create
.envfile)# Required API Keys OPENAI_API_KEY=your_openai_key HF_API_KEY=your_huggingface_key # Optional (for full functionality) AZURE_OPENAI_API_KEY=your_azure_key AZURE_OPENAI_ENDPOINT=your_azure_endpoint GOOGLE_CLOUD_PROJECT_ID=your_gcp_project AWS_ACCESS_KEY_ID=your_aws_key AWS_SECRET_ACCESS_KEY=your_aws_secret # NVIDIA Cloud Integration (for NGC services) NVIDIA_API_KEY=your_nvidia_ngc_api_key NVIDIA_ORG_ID=your_nvidia_org_id # Database & Cache MONGODB_URI=mongodb://localhost:27017/dashboard REDIS_URL=redis://localhost:6379 # Security JWT_SECRET=your_jwt_secret
# Windows PowerShell
.\start-development.ps1
# Linux/macOS
npm run dev# Windows PowerShell
.\start-production.ps1
# Linux/macOS
./start-production.shFor advanced production deployments with health checks, backups, and monitoring:
# Windows PowerShell
.\start-production-enhanced.ps1
# Linux/macOS
./start-production-enhanced.shEnhanced Production Features:
- β Automatic health checks and startup validation
- β Environment and dependency verification
- β Automatic backups before deployment
- β Port conflict detection and resolution
- β PM2 ecosystem configuration
- β Comprehensive logging and monitoring
- β Old backup cleanup
- β Optional PM2 auto-startup setup
Enhanced Production Options:
# Create backup only
./start-production-enhanced.sh --backup
# Cleanup old backups
./start-production-enhanced.sh --cleanup
# Setup auto-startup on boot
./start-production-enhanced.sh --setup-startupThe application will be available at http://localhost:3000
ai-dashboard/
βββ app.js # Main Express server
βββ package.json # Dependencies and scripts
βββ ecosystem.config.js # PM2 process configuration
βββ start-production.sh # Standard Linux/macOS production script
βββ start-production.ps1 # Standard Windows production script
βββ start-production-enhanced.sh # Enhanced Linux/macOS production script
βββ start-production-enhanced.ps1 # Enhanced Windows production script
βββ start-development.ps1 # Windows development script
βββ Dockerfile # Docker containerization
βββ docker-compose.yml # Local development with Docker
βββ k8s/ # Kubernetes deployment
β βββ deployment.yaml
βββ logs/ # Application logs directory
βββ backups/ # Automatic backup storage
βββ tests/ # Test suite
β βββ e2e/ # End-to-end tests
βββ .github/workflows/ # CI/CD pipelines
β βββ ci-cd.yml
βββ dashboard/ # Frontend assets
βββ index.html # Main dashboard
βββ script.js # Frontend logic
βββ nvidia.js # NVIDIA GPU integration
βββ collaboration.js # Real-time collaboration
βββ styles.css # Styling
POST /api/auth/register- User registrationPOST /api/auth/login- User login
POST /api/ai/text-generation- Hugging Face text generationPOST /api/ai/image-generation- Stable Diffusion image generationPOST /api/ai/code-completion- Code completionPOST /api/ai/sentiment-analysis- Sentiment analysisPOST /api/ai/openai-chat- OpenAI GPT-4 chatPOST /api/ai/openai-image- OpenAI DALL-E 3 imagesPOST /api/ai/google-vertex- Google Cloud Vertex AIPOST /api/ai/azure-openai-chat- Azure OpenAIPOST /api/ai/aws-sagemaker- AWS SageMakerPOST /api/ai/rag-query- RAG-powered queriesPOST /api/ai/fine-tune- Model fine-tuning
GET /api/nvidia/models- List available NVIDIA NGC modelsPOST /api/nvidia/inference- Run inference on NVIDIA cloud modelsGET /api/nvidia/instances- List NVIDIA cloud instancesPOST /api/nvidia/deploy- Deploy models to NVIDIA cloudGET /api/nvidia/org- Get NVIDIA organization info
GET /api/operations- Operations KPIsGET /api/banking- Banking metricsGET /api/profits- Revenue & Profits AnalyticsGET /api/gpu- Local NVIDIA GPU metricsGET /metrics- Prometheus metrics
POST /api/docker/containers- Docker container managementPOST /api/kubernetes/deploy- Kubernetes deployments
docker-compose up -d# Build and run
docker build -t ai-dashboard .
docker run -d -p 3000:3000 --env-file .env ai-dashboard# Deploy to Kubernetes
kubectl apply -f k8s/deployment.yaml
# Check status
kubectl get pods
kubectl get services- PM2: Process monitoring and management
- Prometheus: Metrics collection at
/metrics - Logs: Available via
pm2 logs ai-dashboard
- Helmet.js security headers
- Express rate limiting
- JWT token authentication
- Input validation and sanitization
- CORS protection
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
For support and questions:
- Create an issue in the repository
- Check the logs:
pm2 logs ai-dashboard - Monitor metrics:
http://localhost:3000/metrics
Built with β€οΈ for the future of AI-powered enterprise applications