Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Lightweight image registration library using PyTorch

License

Notifications You must be signed in to change notification settings

AaronDon2018/torchreg

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

torchreg

torchreg is a tiny (~100 lines) PyTorch-based library for 2D and 3D image registration.

Usage

Affine Registration of two image tensors is done via:

from torchreg import AffineRegistration

# Load images as torch Tensors
small_alice = ...  # Tensor with shape [1, 3 (color channel), 1024 (pixel), 1024 (pixel)]
big_alice = ...    # Tensor with shape [1, 3 (color channel), 1024 (pixel), 1024 (pixel)]
# Intialize AffineRegistration
reg = AffineRegistration(is_3d=False)
# Run it!
moved_alice = reg(small_alice, big_alice)

Features

Multiresolution approach to save compute (per default 1/4 + 1/2 of original resolution for 500 + 100 iterations)

reg = AffineRegistration(scales=(4, 2), iterations=(500, 100))

Choosing which operations (translation, rotation, zoom, shear) to optimize

reg = AffineRegistration(with_zoom=False, with_shear=False)

Custom initial parameters

reg = AffineRegistration(zoom=torch.Tensor([[1.5, 2.]]))

Custom dissimilarity functions and optimizers

def dice_loss(x1, x2):
    dim = [2, 3, 4] if len(x2.shape) == 5 else [2, 3]
    inter = torch.sum(x1 * x2, dim=dim)
    union = torch.sum(x1 + x2, dim=dim)
    return 1 - (2. * inter / union).mean()

reg = AffineRegistration(dissimilarity_function=dice_loss, optimizer=torch.optim.Adam)

CUDA support (NVIDIA GPU)

moved_alice = reg(moving=big_alice.cuda(), static=small_alice.cuda())

MPS support (Apple M1 or M2)

moved_alice = reg(moving=big_alice.to('mps'), static=small_alice.to('mps'))

After the registration is run, you can apply it to new images (coregistration)

another_moved_alice = reg.transform(another_alice, shape=(256, 256))

with desired output shape.

You can access the affine

affine = reg.get_affine()

and the four parameters (translation, rotation, zoom, shear)

translation = reg.parameters[0]
rotation = reg.parameters[1]
zoom = reg.parameters[2]
shear = reg.parameters[3]

Installation

pip install torchreg

Examples/Tutorials

There are three example notebooks:

Background

If you want to know how the core of this package works, read the blog post!

About

Lightweight image registration library using PyTorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%