AI00 RWKV Server is an inference API server for the RWKV language model based upon the web-rwkv inference engine.
It supports Vulkan parallel and concurrent batched inference and can run on all GPUs that support Vulkan. No need for Nvidia cards!!! AMD cards and even integrated graphics can be accelerated!!!
No need for bulky pytorch, CUDA and other runtime environments, it's compact and ready to use out of the box!
Compatible with OpenAI's ChatGPT API interface.
100% open source and commercially usable, under the MIT license.
If you are looking for a fast, efficient, and easy-to-use LLM API server, then AI00 RWKV Server is your best choice. It can be used for various tasks, including chatbots, text generation, translation, and Q&A.
Join the AI00 RWKV Server community now and experience the charm of AI!
QQ Group for communication: 30920262
- Based on the
RWKVmodel, it has high performance and accuracy - Supports
Vulkaninference acceleration, you can enjoy GPU acceleration without the need forCUDA! Supports AMD cards, integrated graphics, and all GPUs that supportVulkan - No need for bulky
pytorch,CUDAand other runtime environments, it's compact and ready to use out of the box! - Compatible with OpenAI's ChatGPT API interface
- Chatbot
- Text generation
- Translation
- Q&A
- Any other tasks that LLM can do
-
Directly download the latest version from Release
-
After downloading the model, place the model in the
assets/models/path, for example,assets/models/RWKV-x060-World-3B-v2-20240228-ctx4096.st -
Optionally modify
assets/configs/Config.tomlfor model configurations like model path, quantization layers, etc. -
Run in the command line
$ ./ai00_rwkv_server
-
Open the browser and visit the WebUI at http://localhost:65530 (https://localhost:65530 if
tlsis enabled)
-
Clone this repository
$ git clone https://github.com/cgisky1980/ai00_rwkv_server.git $ cd ai00_rwkv_server -
After downloading the model, place the model in the
assets/models/path, for example,assets/models/RWKV-x060-World-3B-v2-20240228-ctx4096.st -
Compile
$ cargo build --release
-
After compilation, run
$ cargo run --release
-
Open the browser and visit the WebUI at http://localhost:65530 (https://localhost:65530 if
tlsis enabled)
It only supports Safetensors models with the .st extension now. Models saved with the .pth extension using torch need to be converted before use.
-
(Recommended) Run the python script
convert_safetensors.py:$ python assets/scripts/convert_safetensors.py --input /path/to/model.pth --output /path/to/model.st
Requirements: Python, with
torchandsafetensorsinstalled. -
If you do not want to install python, In the Release you could find an executable called
converter. Run
$ ./converter --input /path/to/model.pth --output /path/to/model.st- If you are building from source, run
$ cargo run --release --package converter -- --input /path/to/model.pth --output /path/to/model.st- Just like the steps mentioned above, place the model in the
.stmodel in theassets/models/path and modify the model path inassets/configs/Config.toml
--config: Configure file path (default:assets/configs/Config.toml)--ip: The IP address the server is bound to--port: Running port
The API service starts at port 65530, and the data input and output format follow the Openai API specification.
Note that some APIs like chat and completions have additional optional fields for advanced functionalities. Visit http://localhost:65530/api-docs for API schema.
/api/oai/v1/models/api/oai/models/api/oai/v1/chat/completions/api/oai/chat/completions/api/oai/v1/completions/api/oai/completions/api/oai/v1/embeddings/api/oai/embeddings
The following is an out-of-box example of Ai00 API invocations in Python:
import openai
class Ai00:
def __init__(self,model="model",port=65530,api_key="JUSTSECRET_KEY") :
openai.api_base = f"http://127.0.0.1:{port}/api/oai"
openai.api_key = api_key
self.ctx = []
self.params = {
"system_name": "System",
"user_name": "User",
"assistant_name": "Assistant",
"model": model,
"max_tokens": 4096,
"top_p": 0.6,
"temperature": 1,
"presence_penalty": 0.3,
"frequency_penalty": 0.3,
"half_life": 400,
"stop": ['\x00','\n\n']
}
def set_params(self,**kwargs):
self.params.update(kwargs)
def clear_ctx(self):
self.ctx = []
def get_ctx(self):
return self.ctx
def continuation(self, message):
response = openai.Completion.create(
model=self.params['model'],
prompt=message,
max_tokens=self.params['max_tokens'],
half_life=self.params['half_life'],
top_p=self.params['top_p'],
temperature=self.params['temperature'],
presence_penalty=self.params['presence_penalty'],
frequency_penalty=self.params['frequency_penalty'],
stop=self.params['stop']
)
result = response.choices[0].text
return result
def append_ctx(self,role,content):
self.ctx.append({
"role": role,
"content": content
})
def send_message(self, message,role="user"):
self.ctx.append({
"role": role,
"content": message
})
result = openai.ChatCompletion.create(
model=self.params['model'],
messages=self.ctx,
names={
"system": self.params['system_name'],
"user": self.params['user_name'],
"assistant": self.params['assistant_name']
},
max_tokens=self.params['max_tokens'],
half_life=self.params['half_life'],
top_p=self.params['top_p'],
temperature=self.params['temperature'],
presence_penalty=self.params['presence_penalty'],
frequency_penalty=self.params['frequency_penalty'],
stop=self.params['stop']
)
result = result.choices[0].message['content']
self.ctx.append({
"role": "assistant",
"content": result
})
return result
ai00 = Ai00()
ai00.set_params(
max_tokens = 4096,
top_p = 0.55,
temperature = 2,
presence_penalty = 0.3,
frequency_penalty = 0.8,
half_life = 400,
stop = ['\x00','\n\n']
)
print(ai00.send_message("how are you?"))
print(ai00.send_message("me too!"))
print(ai00.get_ctx())
ai00.clear_ctx()
print(ai00.continuation("i like"))Since v0.5, Ai00 has a unique feature called BNF sampling. BNF forces the model to output in specified formats (e.g., JSON or markdown with specified fields) by limiting the possible next tokens the model can choose from.
Here is an example BNF for JSON with fields "name", "age" and "job":
start ::= json_object;
json_object ::= "{\n" object_members "\n}";
object_members ::= json_member | json_member ",\n" object_members;
json_member ::= "\t" json_key ": " json_value;
json_key ::= '"' "name" '"' | '"' "age" '"' | '"' "job" '"';
json_value ::= json_string | json_number;
json_string ::= '"'content'"';
content ::= #"\\w*";
json_number ::= positive_digit digits|'0';
digits ::= digit|digit digits;
digit ::= '0'|positive_digit;
positive_digit::="1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";
- Support for
text_completionsandchat_completions - Support for sse push
- Integrate basic front-end
- Parallel inference via
batch serve - Support for
int8quantization - Support for
NF4quantization - Support for
LoRAmodel - Support for tuned initial states
- Hot loading and switching of
LoRAmodel - Hot loading and switching of tuned initial states
- BNF sampling
We are always looking for people interested in helping us improve the project. If you are interested in any of the following, please join us!
- 💀Writing code
- 💬Providing feedback
- 🔆Proposing ideas or needs
- 🔍Testing new features
- ✏Translating documentation
- 📣Promoting the project
- 🏅Anything else that would be helpful to us
No matter your skill level, we welcome you to join us. You can join us in the following ways:
- Join our Discord channel
- Join our QQ group
- Submit issues or pull requests on GitHub
- Leave feedback on our website
We can't wait to work with you to make this project better! We hope the project is helpful to you!
Thank you to these awesome individuals who are insightful and outstanding for their support and selfless dedication to the project!
顾真牛 📖 💻 🖋 🎨 🧑🏫 |
研究社交 💻 💡 🤔 🚧 👀 📦 |
josc146 🐛 💻 🤔 🔧 |
l15y 🔧 🔌 💻 |
Cahya Wirawan 🐛 |
yuunnn_w 📖 |
longzou 💻 🛡️ |
luoqiqi 📖 |