Thanks to visit codestin.com
Credit goes to github.com

Skip to content

AkCodes23/MOSS-AI

Repository files navigation

Manipal Open Source Society - AI Resources

Repository for AI Learning & Development Resources

This repository is a curated collection of AI and Machine Learning resources shared by the Manipal Open Source Society AI Chapter, maintained by Akhil Varanasi (Head of AI). It is designed to help juniors and community members deepen their AI knowledge and accelerate their projects.


Contents

  • ๐Ÿ“š Tutorials & Guides
  • ๐Ÿง‘โ€๐Ÿ’ป Coding Practice & Projects
  • ๐Ÿ“Š Research Papers & Articles
  • ๐Ÿ› ๏ธ Tools & Libraries
  • ๐ŸŽฅ Video Lectures & Workshops
  • ๐Ÿ’ก AI Concepts & Notes

Roadmap :

๐Ÿญ. ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ๐—บ๐—ถ๐—ป๐—ด ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ (๐Ÿญ-๐Ÿฎ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Pick Python (youโ€™ll use it for everything). โ†’ Focus on: Loops, functions, object-oriented programming. โ†’ Tools: Jupyter Notebook, VS Code. Resource: Googleโ€™s Python Class โ†’ https://lnkd.in/d9yFJYXP

๐Ÿฎ. ๐— ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ผ๐˜‚๐—ป๐—ฑ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ (๐Ÿฎ-๐Ÿฏ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Topics: Linear Algebra (vectors, matrices), Calculus (derivatives), Probability. โ†’ Tools: NumPy for practice. Resource: Mathematics for Machine Learning โ†’ mml-book.github.io

๐Ÿฏ. ๐—ฆ๐˜๐—ฎ๐˜๐—ถ๐˜€๐˜๐—ถ๐—ฐ๐˜€ & ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐—ถ๐˜€ (๐Ÿฎ-๐Ÿฏ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Key Skills: Exploratory Data Analysis (EDA), hypothesis testing, correlation. โ†’ Tools: Pandas, Matplotlib, Seaborn. Resource: Kaggleโ€™s Pandas Course โ†’ kaggle.com/learn/pandas

๐Ÿฐ. ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—น๐—ฒ๐—ฎ๐—ป๐—ถ๐—ป๐—ด (๐Ÿญ-๐Ÿฎ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Learn how to handle missing data, outliers, and feature scaling. โ†’ Tools: Pandas, Scikit-learn. Resource: Hands-On Machine Learning by Aurelien Geron โ†’ https://lnkd.in/gxcjbJRp

๐Ÿฑ. ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ (๐Ÿฏ-๐Ÿฐ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Algorithms: Linear Regression, Logistic Regression, KNN, Decision Trees. โ†’ Tools: Scikit-learn. Resource: Andrew Ngโ€™s Machine Learning Course โ†’ https://lnkd.in/gFwA_Gvq

๐Ÿฒ. ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด (๐Ÿฐ-๐Ÿฒ ๐—ช๐—ฒ๐—ฒ๐—ธ๐˜€) โ†’ Topics: Neural Networks, CNNs, RNNs. โ†’ Tools: TensorFlow, PyTorch. Resource: Deep Learning Specialization by Andrew Ng โ†’ https://lnkd.in/g4qZMHxd

๐Ÿณ. ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ & ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ (๐—ข๐—ป๐—ด๐—ผ๐—ถ๐—ป๐—ด) โ†’ Start small: Predictive modeling, image classification, NLP. โ†’ Platforms: Kaggle, DrivenData. Resource: Kaggle Competitions โ†’ kaggle.com/competitions

๐—ง๐—ถ๐—ฝ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ: โ†’ Leverage AI tools (ChatGPT, AutoML) for faster learning. โ†’ Focus on projects, not perfection. โ†’ Donโ€™t just follow tutorials โ€“ build, break, and learn.

Thatโ€™s the roadmap Iโ€™d take โ€“ no fluff, just results.

๐Ÿ“š Tutorials & Guides

Machine Learning Book : https://drive.google.com/file/d/1aNOunm89etXOSlpIqi_mENGtWT6pRJjp/view?usp=sharing

400+ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€: https://lnkd.in/gv9yvfdd

๐—ฃ๐—ฟ๐—ฒ๐—บ๐—ถ๐˜‚๐—บ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ : https://lnkd.in/gPrWQ8is

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—Ÿ๐—ถ๐—ฏ๐—ฟ๐—ฎ๐—ฟ๐˜†: https://lnkd.in/gHSDtsmA

45+ ๐— ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐˜€ ๐—•๐—ผ๐—ผ๐—ธ๐˜€ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐˜€: https://lnkd.in/ghBXQfPc

๐ŸŽฅ Video Lectures

Machine Learning Theory: https://www.youtube.com/watch?v=jGwO_UgTS7I&list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU&ab_channel=StanfordOnline

Introduction to DL : https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

Python: https://www.youtube.com/watch?v=rfscVS0vtbw&ab_channel=freeCodeCamp.org

Pandas: https://www.youtube.com/watch?v=2uvysYbKdjM&t=81s&ab_channel=KeithGalli

Numpy : https://www.youtube.com/watch?v=QUT1VHiLmmI&ab_channel=freeCodeCamp.org

Matplotlib : https://www.youtube.com/watch?v=3Xc3CA655Y4&ab_channel=freeCodeCamp.org

OOPS : https://www.youtube.com/watch?v=iLRZi0Gu8Go&ab_channel=freeCodeCamp.org

DSA : https://www.youtube.com/watch?v=pkYVOmU3MgA&ab_channel=freeCodeCamp.org

Data loading : https://www.youtube.com/watch?v=T23Bs75F7ZQ&ab_channel=freeCodeCamp.org

๐‡๐ž๐ซ๐ž ๐š๐ซ๐ž ๐Ÿ๐ŸŽ ๐˜๐จ๐ฎ๐“๐ฎ๐›๐ž ๐œ๐ก๐š๐ง๐ง๐ž๐ฅ๐ฌ ๐ญ๐ก๐š๐ญ ๐ฆ๐š๐ค๐ž ๐ฅ๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐€๐ˆ ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ž & ๐ฌ๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž๐:

  1. 3Blue1Brown: Understand complex math behind AI visually and intuitively. Link: https://lnkd.in/edegfEEv

  2. Andrej Karpathy : Deep, practical AI lectures explained clearly. Link: https://lnkd.in/eay7TU2a

  3. Lex Fridman : Conversations with leading AI researchers and innovators. Link: https://lnkd.in/ebbtpsww

  4. StatQuest (Josh Starmer): Makes ML concepts fun with humor and clarity. Link: https://lnkd.in/eqTeYjMT

  5. Jeremy Howard : Practical deep learning with hands-on coding examples. Link: https://lnkd.in/e_vHAu84

  6. Two Minute Papers: Summaries of the latest AI papers in minutes. Link: https://lnkd.in/eyBhZC9p

  7. DeepLearning.AI: Structured AI learning from Andrew Ng. Link: https://lnkd.in/e62uRF2g

  8. Machine Learning Street Talk (MLST): Insightful debates and interviews. Link: https://lnkd.in/eUwV47cn

  9. freeCodeCamp: Free AI and ML tutorials with certification paths. Link: https://lnkd.in/eUn2JUiM

  10. Sentdex : Python-based machine learning and data projects. Link: https://lnkd.in/e-dCBfas

  11. Data School : Simple ML and data analysis concepts for beginners. Link: https://lnkd.in/egtSHRy8

  12. Codebasics: Real-world ML use cases and career-focused projects. Link: https://lnkd.in/ez2NmfVd

  13. Siraj Raval : Story-driven tutorials combining creativity and AI. Link: https://lnkd.in/ehJf3jzR

  14. Google Cloud Tech: Learn how to deploy and manage AI models. Link: https://lnkd.in/euJTVeyM

  15. Serrano Academy: Step-by-step tutorials on ML, DL, and AI tools. Link: https://lnkd.in/eSzJJJWY

  16. Tina Huang : Smart AI learning strategies and productivity tips. Link: https://lnkd.in/exwv6q7i

  17. Matt Wolfe : Quick updates on new AI tools and technologies. Link: https://lnkd.in/eiVMeZj3

  18. AI Explained: Deep dives into AI ethics, models, and progress. Link: https://lnkd.in/etfCYhMq

  19. The AI Advantage: Practical ways AI is transforming business productivity. Link: https://lnkd.in/egyKfySP

  20. Hamel Husain : Advanced insights into LLMs, RAG, and model fine-tuning. Link: https://lnkd.in/eSgQMg_d

The best YouTube channels to learn AI from scratch

1] Andrej Karpathy โ€“ Deep learning, LLMs, intro to neural nets https://lnkd.in/evZk-rNk

2] 3Blue1Brown โ€“ Visual math that makes complex ideas intuitive https://lnkd.in/e5n9uzwn

3] Stanford Online (Andrew Ng โ€“ CS229 ML Course) https://lnkd.in/eXsE6CiG

4] Machine Learning Street Talk โ€“ Research deep dives & expert talks https://lnkd.in/eX2-mh39

5] StatQuest (Joshua Starmer) โ€“ ML + statistics made simple https://lnkd.in/ehiMxwUE

6] Serrano Academy (Luis Serrano) โ€“ Clear ML & AI lessons https://lnkd.in/eJsnz4NY

7] Jeremy Howard โ€“ Practical deep learning tutorials https://lnkd.in/ejnKrXYv


๐—–๐—ผ๐—ฟ๐—ฒ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€:

๐— ๐—Ÿ๐—ข๐—ฝ๐˜€ ๐—•๐˜‚๐—ถ๐—น๐—ฑ๐—ถ๐—ป๐—ด ๐—•๐—น๐—ผ๐—ฐ๐—ธ๐˜€:

๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฃ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐—ป๐˜€:


AI Agents

๐Ÿ“น Videos:

  1. LLM Introduction: https://www.youtube.com/watch?v=zjkBMFhNj_g
  2. LLMs from Scratch: https://www.youtube.com/watch?v=9vM4p9NN0Ts
  3. Agentic AI Overview (Stanford): https://www.youtube.com/watch?v=kJLiOGle3Lw
  4. Building and Evaluating Agents: https://www.youtube.com/watch?v=d5EltXhbcfA
  5. Building Effective Agents: https://www.youtube.com/watch?v=D7_ipDqhtwk
  6. Building Agents with MCP: https://www.youtube.com/watch?v=kQmXtrmQ5Zg
  7. Building an Agent from Scratch: https://www.youtube.com/watch?v=xzXdLRUyjUg
  8. Philo Agents: https://www.youtube.com/playlist?list=PLacQJwuclt_sV-tfZmpT1Ov6jldHl30NR

๐Ÿ—‚๏ธ Repos

  1. GenAI Agents: https://github.com/nirdiamant/GenAI_Agents
  2. Microsoft's AI Agents for Beginners: https://github.com/microsoft/ai-agents-for-beginners
  3. Prompt Engineering Guide: https://lnkd.in/gJjGbxQr
  4. Hands-On Large Language Models: https://lnkd.in/dxaVF86w
  5. AI Agents for Beginners: https://github.com/microsoft/ai-agents-for-beginners
  6. GenAI Agentshttps://lnkd.in/dEt72MEy
  7. Made with ML: https://lnkd.in/d2dMACMj
  8. Hands-On AI Engineering:https://github.com/Sumanth077/Hands-On-AI-Engineering
  9. Awesome Generative AI Guide: https://lnkd.in/dJ8gxp3a
  10. Designing Machine Learning Systems: https://lnkd.in/dEx8sQJK
  11. Machine Learning for Beginners from Microsoft: https://lnkd.in/dBj3BAEY
  12. LLM Course: https://github.com/mlabonne/llm-course

๐Ÿ—บ๏ธ Guides

  1. Google's Agent Whitepaper: https://lnkd.in/gFvCfbSN
  2. Google's Agent Companion: https://lnkd.in/gfmCrgAH
  3. Building Effective Agents by Anthropic: https://lnkd.in/gRWKANS4.
  4. Claude Code Best Agentic Coding practices: https://lnkd.in/gs99zyCf
  5. OpenAI's Practical Guide to Building Agents: https://lnkd.in/guRfXsFK

๐Ÿ“šBooks:

  1. Understanding Deep Learning: https://udlbook.github.io/udlbook/
  2. Building an LLM from Scratch: https://lnkd.in/g2YGbnWS
  3. The LLM Engineering Handbook: https://lnkd.in/gWUT2EXe
  4. AI Agents: The Definitive Guide - Nicole Koenigstein: https://lnkd.in/dJ9wFNMD
  5. Building Applications with AI Agents - Michael Albada: https://lnkd.in/dSs8srk5
  6. AI Agents with MCP - Kyle Stratis: https://lnkd.in/dR22bEiZ
  7. AI Engineering: https://www.oreilly.com/library/view/ai-engineering/9781098166298/

๐Ÿ“œ Papers

  1. ReAct: https://lnkd.in/gRBH3ZRq
  2. Generative Agents: https://lnkd.in/gsDCUsWm.
  3. Toolformer: https://lnkd.in/gyzrege6
  4. Chain-of-Thought Prompting: https://lnkd.in/gaK5CXzD.
  5. Tree of Thoughts: https://lnkd.in/gRJdv_iU.
  6. Reflexion: https://lnkd.in/gGFMgjUj
  7. Retrieval-Augmented Generation Survey: https://lnkd.in/gGUqkkyR.

๐Ÿง‘โ€๐Ÿซ Courses:

  1. HuggingFace's Agent Course: https://lnkd.in/gmTftTXV
  2. MCP with Anthropic: https://lnkd.in/geffcwdq
  3. Building Vector Databases with Pinecone: https://lnkd.in/gCS4sd7Y
  4. Vector Databases from Embeddings to Apps: https://lnkd.in/gm9HR6_2
  5. Agent Memory: https://lnkd.in/gNFpC542
  6. Building and Evaluating RAG apps: https://lnkd.in/g2qC9-mh
  7. Building Browser Agents: https://lnkd.in/gsMmCifQ
  8. LLMOps: https://lnkd.in/g7bHU37w
  9. Evaluating AI Agents: https://lnkd.in/gHJtwF5s
  10. Computer Use with Anthropic: https://lnkd.in/gMUWg7Fa
  11. Multi-Agent Use: https://lnkd.in/gU9DY9kj
  12. Improving LLM Accuracy: https://lnkd.in/gsE-4FvY
  13. Agent Design Patterns: https://lnkd.in/gzKvx5A4
  14. Multi Agent Systems: https://lnkd.in/gUayts9s

๐Ÿ“ฉ Newsletters

  1. Gradient Ascent: https://lnkd.in/gZbZAeQW
  2. DecodingML by Paul: https://lnkd.in/gpZPgk7J
  3. Deep (Learning) Focus by Cameron: https://lnkd.in/gTUNcUVE
  4. NeoSage by Shivani: https://blog.neosage.io/
  5. Jam with AI by Shirin and Shantanu: https://lnkd.in/gQXJzuV8
  6. Data Hustle by Sai: https://lnkd.in/gZpdTTYD

Contact

For any suggestions or resource contributions, reach out to:
Akhil Varanasi โ€“ Head of AI
Email: [email protected]


Happy Learning & Building!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6