This repository is a curated collection of AI and Machine Learning resources shared by the Manipal Open Source Society AI Chapter, maintained by Akhil Varanasi (Head of AI). It is designed to help juniors and community members deepen their AI knowledge and accelerate their projects.
- ๐ Tutorials & Guides
- ๐งโ๐ป Coding Practice & Projects
- ๐ Research Papers & Articles
- ๐ ๏ธ Tools & Libraries
- ๐ฅ Video Lectures & Workshops
- ๐ก AI Concepts & Notes
๐ญ. ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐๐ฎ๐๐ถ๐ฐ๐ (๐ญ-๐ฎ ๐ช๐ฒ๐ฒ๐ธ๐) โ Pick Python (youโll use it for everything). โ Focus on: Loops, functions, object-oriented programming. โ Tools: Jupyter Notebook, VS Code. Resource: Googleโs Python Class โ https://lnkd.in/d9yFJYXP
๐ฎ. ๐ ๐ฎ๐๐ต๐ฒ๐บ๐ฎ๐๐ถ๐ฐ๐ ๐๐ผ๐๐ป๐ฑ๐ฎ๐๐ถ๐ผ๐ป๐ (๐ฎ-๐ฏ ๐ช๐ฒ๐ฒ๐ธ๐) โ Topics: Linear Algebra (vectors, matrices), Calculus (derivatives), Probability. โ Tools: NumPy for practice. Resource: Mathematics for Machine Learning โ mml-book.github.io
๐ฏ. ๐ฆ๐๐ฎ๐๐ถ๐๐๐ถ๐ฐ๐ & ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ (๐ฎ-๐ฏ ๐ช๐ฒ๐ฒ๐ธ๐) โ Key Skills: Exploratory Data Analysis (EDA), hypothesis testing, correlation. โ Tools: Pandas, Matplotlib, Seaborn. Resource: Kaggleโs Pandas Course โ kaggle.com/learn/pandas
๐ฐ. ๐๐ฎ๐๐ฎ ๐๐น๐ฒ๐ฎ๐ป๐ถ๐ป๐ด (๐ญ-๐ฎ ๐ช๐ฒ๐ฒ๐ธ๐) โ Learn how to handle missing data, outliers, and feature scaling. โ Tools: Pandas, Scikit-learn. Resource: Hands-On Machine Learning by Aurelien Geron โ https://lnkd.in/gxcjbJRp
๐ฑ. ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐๐ฎ๐๐ถ๐ฐ๐ (๐ฏ-๐ฐ ๐ช๐ฒ๐ฒ๐ธ๐) โ Algorithms: Linear Regression, Logistic Regression, KNN, Decision Trees. โ Tools: Scikit-learn. Resource: Andrew Ngโs Machine Learning Course โ https://lnkd.in/gFwA_Gvq
๐ฒ. ๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด (๐ฐ-๐ฒ ๐ช๐ฒ๐ฒ๐ธ๐) โ Topics: Neural Networks, CNNs, RNNs. โ Tools: TensorFlow, PyTorch. Resource: Deep Learning Specialization by Andrew Ng โ https://lnkd.in/g4qZMHxd
๐ณ. ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ & ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ (๐ข๐ป๐ด๐ผ๐ถ๐ป๐ด) โ Start small: Predictive modeling, image classification, NLP. โ Platforms: Kaggle, DrivenData. Resource: Kaggle Competitions โ kaggle.com/competitions
๐ง๐ถ๐ฝ๐ ๐ณ๐ผ๐ฟ ๐ฎ๐ฌ๐ฎ๐ฑ: โ Leverage AI tools (ChatGPT, AutoML) for faster learning. โ Focus on projects, not perfection. โ Donโt just follow tutorials โ build, break, and learn.
Machine Learning Book : https://drive.google.com/file/d/1aNOunm89etXOSlpIqi_mENGtWT6pRJjp/view?usp=sharing
400+ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐: https://lnkd.in/gv9yvfdd
๐ฃ๐ฟ๐ฒ๐บ๐ถ๐๐บ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ป๐๐ฒ๐ฟ๐๐ถ๐ฒ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ : https://lnkd.in/gPrWQ8is
๐ฃ๐๐๐ต๐ผ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ถ๐ฏ๐ฟ๐ฎ๐ฟ๐: https://lnkd.in/gHSDtsmA
45+ ๐ ๐ฎ๐๐ต๐ฒ๐บ๐ฎ๐๐ถ๐ฐ๐ ๐๐ผ๐ผ๐ธ๐ ๐๐๐ฒ๐ฟ๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐๐ถ๐๐ ๐ก๐ฒ๐ฒ๐ฑ๐: https://lnkd.in/ghBXQfPc
Machine Learning Theory: https://www.youtube.com/watch?v=jGwO_UgTS7I&list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU&ab_channel=StanfordOnline
Introduction to DL : https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
Python: https://www.youtube.com/watch?v=rfscVS0vtbw&ab_channel=freeCodeCamp.org
Pandas: https://www.youtube.com/watch?v=2uvysYbKdjM&t=81s&ab_channel=KeithGalli
Numpy : https://www.youtube.com/watch?v=QUT1VHiLmmI&ab_channel=freeCodeCamp.org
Matplotlib : https://www.youtube.com/watch?v=3Xc3CA655Y4&ab_channel=freeCodeCamp.org
OOPS : https://www.youtube.com/watch?v=iLRZi0Gu8Go&ab_channel=freeCodeCamp.org
DSA : https://www.youtube.com/watch?v=pkYVOmU3MgA&ab_channel=freeCodeCamp.org
Data loading : https://www.youtube.com/watch?v=T23Bs75F7ZQ&ab_channel=freeCodeCamp.org
๐๐๐ซ๐ ๐๐ซ๐ ๐๐ ๐๐จ๐ฎ๐๐ฎ๐๐ ๐๐ก๐๐ง๐ง๐๐ฅ๐ฌ ๐ญ๐ก๐๐ญ ๐ฆ๐๐ค๐ ๐ฅ๐๐๐ซ๐ง๐ข๐ง๐ ๐๐ ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ & ๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐๐:
-
3Blue1Brown: Understand complex math behind AI visually and intuitively. Link: https://lnkd.in/edegfEEv
-
Andrej Karpathy : Deep, practical AI lectures explained clearly. Link: https://lnkd.in/eay7TU2a
-
Lex Fridman : Conversations with leading AI researchers and innovators. Link: https://lnkd.in/ebbtpsww
-
StatQuest (Josh Starmer): Makes ML concepts fun with humor and clarity. Link: https://lnkd.in/eqTeYjMT
-
Jeremy Howard : Practical deep learning with hands-on coding examples. Link: https://lnkd.in/e_vHAu84
-
Two Minute Papers: Summaries of the latest AI papers in minutes. Link: https://lnkd.in/eyBhZC9p
-
DeepLearning.AI: Structured AI learning from Andrew Ng. Link: https://lnkd.in/e62uRF2g
-
Machine Learning Street Talk (MLST): Insightful debates and interviews. Link: https://lnkd.in/eUwV47cn
-
freeCodeCamp: Free AI and ML tutorials with certification paths. Link: https://lnkd.in/eUn2JUiM
-
Sentdex : Python-based machine learning and data projects. Link: https://lnkd.in/e-dCBfas
-
Data School : Simple ML and data analysis concepts for beginners. Link: https://lnkd.in/egtSHRy8
-
Codebasics: Real-world ML use cases and career-focused projects. Link: https://lnkd.in/ez2NmfVd
-
Siraj Raval : Story-driven tutorials combining creativity and AI. Link: https://lnkd.in/ehJf3jzR
-
Google Cloud Tech: Learn how to deploy and manage AI models. Link: https://lnkd.in/euJTVeyM
-
Serrano Academy: Step-by-step tutorials on ML, DL, and AI tools. Link: https://lnkd.in/eSzJJJWY
-
Tina Huang : Smart AI learning strategies and productivity tips. Link: https://lnkd.in/exwv6q7i
-
Matt Wolfe : Quick updates on new AI tools and technologies. Link: https://lnkd.in/eiVMeZj3
-
AI Explained: Deep dives into AI ethics, models, and progress. Link: https://lnkd.in/etfCYhMq
-
The AI Advantage: Practical ways AI is transforming business productivity. Link: https://lnkd.in/egyKfySP
-
Hamel Husain : Advanced insights into LLMs, RAG, and model fine-tuning. Link: https://lnkd.in/eSgQMg_d
The best YouTube channels to learn AI from scratch
1] Andrej Karpathy โ Deep learning, LLMs, intro to neural nets https://lnkd.in/evZk-rNk
2] 3Blue1Brown โ Visual math that makes complex ideas intuitive https://lnkd.in/e5n9uzwn
3] Stanford Online (Andrew Ng โ CS229 ML Course) https://lnkd.in/eXsE6CiG
4] Machine Learning Street Talk โ Research deep dives & expert talks https://lnkd.in/eX2-mh39
5] StatQuest (Joshua Starmer) โ ML + statistics made simple https://lnkd.in/ehiMxwUE
6] Serrano Academy (Luis Serrano) โ Clear ML & AI lessons https://lnkd.in/eJsnz4NY
7] Jeremy Howard โ Practical deep learning tutorials https://lnkd.in/ejnKrXYv
๐๐ผ๐ฟ๐ฒ ๐๐ผ๐ป๐ฐ๐ฒ๐ฝ๐๐:
- CI/CD (Continuous Integration & Deployment) โ https://lnkd.in/dNdq9FSn
- Model Versioning & Registry โ https://lnkd.in/d-QU637Z
- Experiment Tracking (MLflow / W&B) โ https://lnkd.in/deFrPyHU
- Data Version Control (DVC) โ https://lnkd.in/d5VQazN9
- Monitoring & Drift Detection โ https://lnkd.in/dYwu-q2m
๐ ๐๐ข๐ฝ๐ ๐๐๐ถ๐น๐ฑ๐ถ๐ป๐ด ๐๐น๐ผ๐ฐ๐ธ๐:
- Data Pipeline (ETL / ELT) โ https://lnkd.in/dhnTfFHP
- Feature Store (Feast / Tecton) โ https://lnkd.in/dHJJ36a4
- Model Packaging (Docker / ONNX) - https://lnkd.in/dxGvWJ4w
- Deployment (Batch / Real-Time / Edge) โ https://lnkd.in/du7ej8p2
- Orchestration (Airflow / Prefect / Kubeflow) โ https://lnkd.in/dDCrHszG
- Observability (Prometheus / Grafana) โ https://lnkd.in/dYw_QQtA
๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป ๐ฃ๐ฎ๐๐๐ฒ๐ฟ๐ป๐:
- Batch vs Online Inference โ https://lnkd.in/dkE4RZ23
- Shadow / Canary / Blue-Green Deployments โhttps://lnkd.in/dZedEeWm
- Retraining & Continuous Learning โ https://lnkd.in/dEKNbTT7
- Feedback Loops & Drift Correction โ https://lnkd.in/drRXMTAd
AI Agents
๐น Videos:
- LLM Introduction: https://www.youtube.com/watch?v=zjkBMFhNj_g
- LLMs from Scratch: https://www.youtube.com/watch?v=9vM4p9NN0Ts
- Agentic AI Overview (Stanford): https://www.youtube.com/watch?v=kJLiOGle3Lw
- Building and Evaluating Agents: https://www.youtube.com/watch?v=d5EltXhbcfA
- Building Effective Agents: https://www.youtube.com/watch?v=D7_ipDqhtwk
- Building Agents with MCP: https://www.youtube.com/watch?v=kQmXtrmQ5Zg
- Building an Agent from Scratch: https://www.youtube.com/watch?v=xzXdLRUyjUg
- Philo Agents: https://www.youtube.com/playlist?list=PLacQJwuclt_sV-tfZmpT1Ov6jldHl30NR
๐๏ธ Repos
- GenAI Agents: https://github.com/nirdiamant/GenAI_Agents
- Microsoft's AI Agents for Beginners: https://github.com/microsoft/ai-agents-for-beginners
- Prompt Engineering Guide: https://lnkd.in/gJjGbxQr
- Hands-On Large Language Models: https://lnkd.in/dxaVF86w
- AI Agents for Beginners: https://github.com/microsoft/ai-agents-for-beginners
- GenAI Agentshttps://lnkd.in/dEt72MEy
- Made with ML: https://lnkd.in/d2dMACMj
- Hands-On AI Engineering:https://github.com/Sumanth077/Hands-On-AI-Engineering
- Awesome Generative AI Guide: https://lnkd.in/dJ8gxp3a
- Designing Machine Learning Systems: https://lnkd.in/dEx8sQJK
- Machine Learning for Beginners from Microsoft: https://lnkd.in/dBj3BAEY
- LLM Course: https://github.com/mlabonne/llm-course
๐บ๏ธ Guides
- Google's Agent Whitepaper: https://lnkd.in/gFvCfbSN
- Google's Agent Companion: https://lnkd.in/gfmCrgAH
- Building Effective Agents by Anthropic: https://lnkd.in/gRWKANS4.
- Claude Code Best Agentic Coding practices: https://lnkd.in/gs99zyCf
- OpenAI's Practical Guide to Building Agents: https://lnkd.in/guRfXsFK
๐Books:
- Understanding Deep Learning: https://udlbook.github.io/udlbook/
- Building an LLM from Scratch: https://lnkd.in/g2YGbnWS
- The LLM Engineering Handbook: https://lnkd.in/gWUT2EXe
- AI Agents: The Definitive Guide - Nicole Koenigstein: https://lnkd.in/dJ9wFNMD
- Building Applications with AI Agents - Michael Albada: https://lnkd.in/dSs8srk5
- AI Agents with MCP - Kyle Stratis: https://lnkd.in/dR22bEiZ
- AI Engineering: https://www.oreilly.com/library/view/ai-engineering/9781098166298/
๐ Papers
- ReAct: https://lnkd.in/gRBH3ZRq
- Generative Agents: https://lnkd.in/gsDCUsWm.
- Toolformer: https://lnkd.in/gyzrege6
- Chain-of-Thought Prompting: https://lnkd.in/gaK5CXzD.
- Tree of Thoughts: https://lnkd.in/gRJdv_iU.
- Reflexion: https://lnkd.in/gGFMgjUj
- Retrieval-Augmented Generation Survey: https://lnkd.in/gGUqkkyR.
๐งโ๐ซ Courses:
- HuggingFace's Agent Course: https://lnkd.in/gmTftTXV
- MCP with Anthropic: https://lnkd.in/geffcwdq
- Building Vector Databases with Pinecone: https://lnkd.in/gCS4sd7Y
- Vector Databases from Embeddings to Apps: https://lnkd.in/gm9HR6_2
- Agent Memory: https://lnkd.in/gNFpC542
- Building and Evaluating RAG apps: https://lnkd.in/g2qC9-mh
- Building Browser Agents: https://lnkd.in/gsMmCifQ
- LLMOps: https://lnkd.in/g7bHU37w
- Evaluating AI Agents: https://lnkd.in/gHJtwF5s
- Computer Use with Anthropic: https://lnkd.in/gMUWg7Fa
- Multi-Agent Use: https://lnkd.in/gU9DY9kj
- Improving LLM Accuracy: https://lnkd.in/gsE-4FvY
- Agent Design Patterns: https://lnkd.in/gzKvx5A4
- Multi Agent Systems: https://lnkd.in/gUayts9s
๐ฉ Newsletters
- Gradient Ascent: https://lnkd.in/gZbZAeQW
- DecodingML by Paul: https://lnkd.in/gpZPgk7J
- Deep (Learning) Focus by Cameron: https://lnkd.in/gTUNcUVE
- NeoSage by Shivani: https://blog.neosage.io/
- Jam with AI by Shirin and Shantanu: https://lnkd.in/gQXJzuV8
- Data Hustle by Sai: https://lnkd.in/gZpdTTYD
For any suggestions or resource contributions, reach out to:
Akhil Varanasi โ Head of AI
Email: [email protected]
Happy Learning & Building!