Thanks to visit codestin.com
Credit goes to github.com

Skip to content

AlexInABox/IPED-cuda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IPED-cuda: Containerized IPED with GPU Support

DeepWiki DeepWiki

Podman/Docker setup for running IPED with GPU acceleration. Includes audio transcription (Whisper), face recognition (dlib), OCR, and image processing—all optimized for NVIDIA CUDA.

Current Versions: IPED 4.3.0, CUDA 12.4

Prerequisites

# Fedora/RHEL
sudo dnf install podman podman-compose

# Ubuntu/Debian
sudo apt install podman podman-compose

# Arch
sudo pacman -S podman podman-compose

# Install NVIDIA Container Toolkit for GPU support
# https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/

Important

Install NVIDIA Container Toolkit for GPU support. More info: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/

Quick Start

1. Build

podman build docker/ -t iped-cuda:4.3.0

Warning

The resulting image has a size of about 25GB. The build will take about 30-60 minutes depending on your hardware and internet speed.

2. Process Evidence

./startIped-cli.sh process \
  --evidence /path/to/evidence.E01 \
  --hashes-db /path/to/hashdb \
  --output my_case

# Multiple evidence files
./startIped-cli.sh process \
  --evidence /data/phone.E01 \
  --evidence /data/disk.dd \
  --hashes-db /db/hashes \
  --output my_case

3. Analyze Results

./startIped-cli.sh analyze --case-name my_case

Command Reference

Process

./startIped-cli.sh process [options]

Required:

  • -e, --evidence PATH - Evidence file/directory (repeatable)
  • -d, --hashes-db PATH - Hash database directory
  • -o, --output NAME - Case output name

Optional:

  • -t, --threads NUM - Processing threads (default: half available cores)
  • -m, --memory SIZE - Java heap size (default: 2/3 physical RAM)
  • -c, --config PATH - Custom config directory
  • --continue - Resume interrupted case
  • --no-gpu - Disable GPU acceleration
  • --nogui - Headless mode

Analyze

./startIped-cli.sh analyze --case-name NAME

List

./startIped-cli.sh list

Clean

./startIped-cli.sh clean

Configuration

To configure the behaviour or profiles of IPED, just modfiy the files in conf/ before starting a new case. You can additionally edit IPEDConfig.txt or LocalConfig.txt!

All configuration files will be mounted into the container at runtime. So theres no need to rebuild the image ^^

Project Structure

IPED-cuda/
├── startIped-cli.sh                        # CLI entry point
├── docker/
│   ├── Dockerfile                          # Container definition
│   ├── docker-compose.template.yml         # Processing templatee
│   └── ewf.cpp.patch                       # Sleuthkit patch
├── conf/                                   # Configuration files
├── results/                                # Output (case results)
├── logs/                                   # Processing logs
└── ipedtmp/                                # Temporary files

Troubleshooting

GPU Not Detected

podman run --rm --device nvidia.com/gpu=all ubuntu nvidia-smi

# If CDI error:
sudo nvidia-modprobe -u -c=0

If any of the above commands dont work, iped-cuda will never work either! So ask the internet or LLM's for help until you get that fixed basically!

Out of Memory

  • Reduce threads: --threads 4
  • Reduce heap: --memory 32G
  • Process in smaller batches
  • Close other applications

Slow Processing

  • Check GPU usage: compare with --no-gpu flag

License

Licensed under GPLv3. See LICENSE.

Related projects:

Docs:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published