Podman/Docker setup for running IPED with GPU acceleration. Includes audio transcription (Whisper), face recognition (dlib), OCR, and image processing—all optimized for NVIDIA CUDA.
# Fedora/RHEL
sudo dnf install podman podman-compose
# Ubuntu/Debian
sudo apt install podman podman-compose
# Arch
sudo pacman -S podman podman-compose
# Install NVIDIA Container Toolkit for GPU support
# https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/Important
Install NVIDIA Container Toolkit for GPU support. More info: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/
podman build docker/ -t iped-cuda:4.3.0Warning
The resulting image has a size of about 25GB. The build will take about 30-60 minutes depending on your hardware and internet speed.
./startIped-cli.sh process \
--evidence /path/to/evidence.E01 \
--hashes-db /path/to/hashdb \
--output my_case
# Multiple evidence files
./startIped-cli.sh process \
--evidence /data/phone.E01 \
--evidence /data/disk.dd \
--hashes-db /db/hashes \
--output my_case./startIped-cli.sh analyze --case-name my_case./startIped-cli.sh process [options]Required:
-e, --evidence PATH- Evidence file/directory (repeatable)-d, --hashes-db PATH- Hash database directory-o, --output NAME- Case output name
Optional:
-t, --threads NUM- Processing threads (default: half available cores)-m, --memory SIZE- Java heap size (default: 2/3 physical RAM)-c, --config PATH- Custom config directory--continue- Resume interrupted case--no-gpu- Disable GPU acceleration--nogui- Headless mode
./startIped-cli.sh analyze --case-name NAME./startIped-cli.sh list./startIped-cli.sh cleanTo configure the behaviour or profiles of IPED, just modfiy the files in conf/ before starting a new case.
You can additionally edit IPEDConfig.txt or LocalConfig.txt!
All configuration files will be mounted into the container at runtime. So theres no need to rebuild the image ^^
IPED-cuda/
├── startIped-cli.sh # CLI entry point
├── docker/
│ ├── Dockerfile # Container definition
│ ├── docker-compose.template.yml # Processing templatee
│ └── ewf.cpp.patch # Sleuthkit patch
├── conf/ # Configuration files
├── results/ # Output (case results)
├── logs/ # Processing logs
└── ipedtmp/ # Temporary files
podman run --rm --device nvidia.com/gpu=all ubuntu nvidia-smi
# If CDI error:
sudo nvidia-modprobe -u -c=0If any of the above commands dont work, iped-cuda will never work either! So ask the internet or LLM's for help until you get that fixed basically!
- Reduce threads:
--threads 4 - Reduce heap:
--memory 32G - Process in smaller batches
- Close other applications
- Check GPU usage: compare with
--no-gpuflag
Licensed under GPLv3. See LICENSE.
Related projects:
- IPED (GPLv3+)
- IPED Docker
- Whisper (MIT)
- dlib (Boost License 1.0)
Docs: