AI-driven conversational assistant for e-commerce workflows.
Built on Rasa 3.x for intent classification and dialogue management, with a React frontend and Node.js middleware.
- Order tracking via validated IDs
- Product and inventory lookup
- Return / refund flow automation
- Payment and shipping inquiries
- Context-aware multi-turn conversations
| Layer | Technologies |
|---|---|
| NLP / AI | Rasa Open Source 3.x, spaCy |
| Frontend | React 18+ |
| Backend | Node.js, Express |
| Language | Python 3.8+ |
git clone <repo-url>
cd rasa-ecommerce-assistant
# Python environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
# Frontend setup
cd src && npm install && cd ..
# Train and launch
rasa train
rasa run --enable-api --port 5005 &
rasa run actions --port 5055 &
cd src && npm startIntents:
track_order, return_policy, product_search, shipping_info, payment_methods
Entities:
order_id, product_name, shipping_type, payment_method
rasa-ecommerce-assistant/
├── actions/ # Custom Python actions
├── data/ # NLU data, stories, rules
├── models/ # Trained Rasa models
├── src/ # React client
├── config.yml # Rasa pipeline & policies
├── domain.yml # Intents, entities, slots, responses
├── endpoints.yml # Action server configuration
└── requirements.txt # Python dependencies
- Response latency < 200 ms
- Intent accuracy ≥ 95%
- ~50 concurrent sessions (test environment)
MIT © Contributors