-
Evaluate adversarial attack and defense methods on SAR and optical Images.
-
-
mmclassification Public
Forked from open-mmlab/mmpretrainOpenMMLab Image Classification Toolbox and Benchmark
Python Apache License 2.0 UpdatedApr 14, 2022 -
pytorch-image-models Public
Forked from huggingface/pytorch-image-modelsPyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
-
HomeworkTemplate Public
Forked from bytedance-sjtu-android2022/HomeworkTemplate -
Huggingface_Toturials Public
Forked from lansinuote/Huggingface_Toturialsbert-base-chinese example
-
mmdetection Public
Forked from open-mmlab/mmdetectionOpenMMLab Detection Toolbox and Benchmark
-
github Public
Forked from github-tools/githubA higher-level wrapper around the Github API. Intended for the browser.
-
pytorch-book Public
Forked from chenyuntc/pytorch-bookPyTorch tutorials and fun projects including neural talk, neural style, poem writing, anime generation (《深度学习框架PyTorch:入门与实战》)
-
-
PyRetri Public
Forked from PyRetri/PyRetriOpen source deep learning based unsupervised image retrieval toolbox built on PyTorch🔥
Python Apache License 2.0 UpdatedJan 25, 2021 -
CBIR Public
Forked from pochih/CBIR🏞 A content-based image retrieval (CBIR) system
Python UpdatedSep 21, 2020 -
-
-
-
Image-matching-and-ranging-based-on-binocular-stereo-vision Public
Forked from Cuirongcheng/Image-matching-and-ranging-based-on-binocular-stereo-vision双目立体视觉是计算机视觉范畴的核心之一,它利用双目相机来获得目标物体的图像,经过物体图像处理 之后得到目标物体所在场景环境的三维信息,最终实现非接触条件下测距,简单便捷。本次毕业设计主要内容为研究 基于双目立体视觉平台上的图像匹配以及目标物体的距离测量技术,图像特征提取部分研究了 SIFT 算法和 SURF 算 法,特征匹配部分研究了 BF 法和 FLANN 法,距离测量研究主要通过视差深度…
-
Non-targeted-Attack-IJCAI2019-ColdRiver-1 Public
Forked from jiangyangzhou/Non-targeted-Attack-IJCAI2019-ColdRiverNo.5 solution to non-targeted attack in IJCAI-2019 Alibaba Adversarial AI Challenge (AAAC 2019))
-
mnist_tutorial Public
Forked from LinguoLi/mnist_tutorialA tutorial for mnist hand writen digit classification using sklearn, pytorch and keras.