Thanks to visit codestin.com
Credit goes to github.com

Skip to content

The source code for "Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach" (CVPR24 Oral)

License

Notifications You must be signed in to change notification settings

EthanLiang99/EvLight

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Towards Robust Event-guided Low-Light Image Enhancement:
A Large-Scale Real-World Event-Image Dataset and Novel Approach

[CVPR 2024 Oral]


📢 News

  • [2025.09.23] 🎉 Our extension paper "Evlight++" has been accepted by IEEE TPAMI!
  • [2024.12.12] Normal-light event streams are released.
  • [2024.08.24] Source code is released.
  • [2024.06.15] SDE dataset and synthetic event dataset of SDSD are released.
  • [2024.04.06] Dataset and code release plan announced.

📌 Roadmap & Status

  • Release of synthetic event dataset of SDSD
  • Release of our collected SDE dataset
  • Release of source code
  • Release of split normal-light event streams and the whole normal-light event streams

📁 Dataset Preparation

1. SDE Dataset (Real-World)

The SDE dataset contains 91 image+event paired sequences (43 indoor, 48 outdoor) captured with a DAVIS346.

  • Resolution: 346 × 260
  • Split: 76 training sequences, 15 testing sequences.
Dataset Content Baidu Netdisk OneDrive Password
Aligned Dataset Link Link w7qe
Normal-Light Events - Link -

Note: We focus on the consistency between normal/low-light images. Consistency between event streams has not yet been fully verified.

Click to view SDE Directory Structure
--indoor/outdoor 
├── test 
│   ├── pair1 
│   │   ├── low 
│   │   │   ├── xxx.png (low-light RGB frame) 
│   │   │   ├── xxx.npz (split low-light event streams) 
│   │   │   └── lowlight_event.npz (the whole low-light event stream) 
│   │   └── normal 
│   │       └── xxx.png (normal-light RGB frame) 
└── train 
    └── pair1 
        ├── low 
        │   ├── xxx.png 
        │   ├── xxx.npz 
        │   └── lowlight_event.npz 
        └── normal 
            └── xxx.png 

2. SDSD Dataset (Synthetic Events)

We incorporated events into the SDSD dataset using the v2e simulator (resized to 346x260).

Dataset Content Baidu Netdisk OneDrive Password
Processed Events Link Link wrjv

⚠️ Notice:

  1. Please download the latest version (we fixed previous issues).
  2. We recommend skipping the first/last 3 split event files due to sparse events caused by slow motion.
Click to view SDSD Directory Structure
--indoor/outdoor 
├── test 
│   └── pair1 
│       ├── low (split low-light event streams for each RGB frame) 
│       └── low_event (whole synthetic low-light event stream) 
└── train 
    └── pair1 
        ├── low 
        └── low_event 

💻 Usage

1. Dependencies

pip install -r requirements.txt

2. Pretrained Models

Download models from Baidu Pan (pwd: 8agv) or OneDrive.

3. Training

  1. Modify the dataset path in options/train/xxx.yaml.
  2. Run the training script:
sh options/train/xxx.sh

4. Testing

  1. Modify the model and dataset paths in options/test/xxx.yaml.
  2. Run the test script:
sh options/test/xxx.sh

🎓 Citation

If this work is helpful for your research, please consider citing:

@inproceedings{liang2024towards,
  title={Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach},
  author={Liang, Guoqiang and Chen, Kanghao and Li, Hangyu and Lu, Yunfan and Wang, Lin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={23--33},
  year={2024}
}

❤️ Acknowledgment

We thank the authors of INR-Event-VSR and Retinexformer for their open-source contributions.

About

The source code for "Towards Robust Event-guided Low-Light Image Enhancement: A Large-Scale Real-World Event-Image Dataset and Novel Approach" (CVPR24 Oral)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published