A comprehensive collection of Python applications and Jupyter notebooks for simulating self-affine fractals, combining mathematical visualization, interactive applications, and scientific documentation to explore fractal geometry.
Interactive React Apps: https://tyson-swetnam.github.io/fractal-notebooks/react
Documentation: https://tyson-swetnam.github.io/fractal-notebooks
- Interactive Streamlit Applications - Real-time fractal visualization with parameter controls
- Jupyter Notebooks - Educational content with mathematical theory and implementations
- Research-Grade Tools - Scientific Python stack for fractal analysis and dimension calculation
- Comprehensive Documentation - MkDocs site with LaTeX equations and theory
- Cloud Deployment - K3s Kubernetes with GPU support for scalable computation
- Containerization - Docker deployment for consistent environments
apps/- Streamlit applications for interactive fractal visualizationdocs/- MkDocs documentation with mathematical content and theorydocs/notebooks/- Jupyter notebooks with fractal algorithms and examplesk3s-deployment/- Kubernetes configurations for JupyterLab and Weaviatedocker/- Docker containerization for Streamlit applicationsreact/- React-based web applications for fractal exploration
git clone https://github.com/tyson-swetnam/fractal-notebooks.git
cd fractal-notebooks
pip install -r requirements.txt
python -m mkdocs serveAccess at http://localhost:8000
# Run specific applications
streamlit run apps/mandelbrot.py
streamlit run apps/branching_tree.py
streamlit run apps/julia.pycd docker/
docker build -t fractal-app .
docker run -p 8501:8501 fractal-appkubectl create namespace ai-workloads
kubectl apply -f k3s-deployment/ -n ai-workloads- Documentation: MkDocs with Material theme, MathJax for equations
- Interactive Apps: Streamlit for web-based fractal visualizations
- Notebooks: Jupyter with NumPy, Matplotlib, SciPy scientific stack
- Deployment: K3s Kubernetes with GPU support for AI workloads
- Containerization: Docker for application packaging and deployment
- Mandelbrot & Julia Sets: Complex number iterations
- Barnsley Ferns: Iterated function systems
- Tree Structures: L-systems and branching patterns
- Noise Generation: Brownian motion and pink noise simulations
- Differential Box Counting: Fractal dimension analysis
- Dimensionality Studies: Mathematical analysis of fractal properties
- 3D Visualizations: Interactive Plotly and Matplotlib rendering
Contributions are welcome! Please see individual folder README files for specific development guidelines:
apps/README.md- Streamlit application developmentdocs/README.md- Documentation structure and MkDocs configurationk3s-deployment/README.md- Kubernetes deployment guide
If you use this work in your research, please cite:
@misc{fractal-notebooks,
title={Fractal Notebooks: Interactive Platform for Self-Affine Fractal Analysis},
author={Swetnam, Tyson},
year={2024},
url={https://github.com/tyson-swetnam/fractal-notebooks}
}This project is open source and available under the MIT License.