Thanks to visit codestin.com
Credit goes to github.com

Skip to content
/ MOVE Public

[ICCV 2025] MOVE: Motion-Guided Few-Shot Video Object Segmentation

License

FudanCVL/MOVE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOVE: Motion-Guided Few-Shot Video Object Segmentation

Kaining Ying * · Hengrui Hu * · Henghui Ding ✉️

Fudan University, China

ICCV 2025, Honolulu, Hawai'i


TL;DR: Our task is to segment dynamic objects in videos based on a few annotated examples that share the same motion patterns. This task focuses on understanding motion information rather than relying solely on static object categories.

📰 News

  • 20250906 | Code and dataset are released.
  • 20250627 | MOVE is accepted by ICCV 2025! 🌺🏄‍♂️🌴

📊 Dataset Preparation

Our dataset is available on Hugging Face 🤗. You can download it and places it at:

pip install -U "huggingface_hub[cli]"
huggingface-cli download FudanCVL/MOVE --repo-type dataset --local-dir ./data/ --local-dir-use-symlinks False --max-workers 16

🛠️ Environment Setup

First, clone the repository:

git clone https://github.com/FudanCVL/MOVE
cd MOVE

Then, set up the conda environment:

conda create -n move python=3.10 -y 
conda activate move
pip install -r requirements.txt

🚀 Train

Before getting started, please ensure your file structure is as shown below.

MOVE/                  # root of project
├── data/             
│   └── MOVE_release/ # dataset directory
├── pretrain_model/   
│   ├── resnet50_v2.pth # ResNet pretrained weights
│   └── swin_tiny_patch244_window877_kinetics400_1k.pth      # Swin Transformer pretrained weights
└── ...               # other project files

Please download the pretrain backbone weights from Hugging Face 🤗.

Use the following command to start training with OS setting, ResNet backbone, 2-way-1-shot, and group 0:

torchrun --nproc_per_node=8 tools/train.py \
    --snapshot_dir snapshots \
    --group 0 \
    --num_ways 2 \
    --num_shots 1 \
    --total_episodes 15000 \
    --setting default \
    --loss_type default \
    --resume \
    --query_frames 5 \
    --support_frames 5 \
    --save_interval 1000 \
    --ce_loss_weight 0.25 \
    --iou_loss_weight 5.0 \
    --backbone resnet50 \
    --motion_appear_orth \
    --obj_cls_loss_weight 0.005 \
    --motion_cls_loss_weight 0.005 \
    --orth_loss_weight 0.05

🧪 Test

Use the following command to test the model with OS setting, ResNet backbone, 2-way-1-shot, and group 0:

torchrun --nproc_per_node=8 tools/inference.py \
    --snapshot snapshots/resnet50/default/2-way-1-shot/group0/latest_checkpoint.pth \
    --group 0 \
    --num_ways 2 \
    --num_shots 1 \
    --num_episodes 2500 \
    --support_frames 5 \
    --setting default \
    --backbone resnet50 \
    --overwrite

We also release the pretrain weights at Hugging Face 🤗 (WIP 🚧).

📇 Citation

If you find our paper and dataset useful for your research, please generously cite our paper.

@inproceedings{ying2025move,
  title={{MOVE}: {M}otion-{G}uided {F}ew-{S}hot {V}ideo {O}bject {S}egmentation},
  author={Ying, Kaining and Hu, Hengrui and Ding, Henghui},
  year={2025},
  booktitle={ICCV}
}

📄 License

MOVE is licensed under a CC BY-NC-SA 4.0 License. The data of MOVE is released for non-commercial research purpose only.

About

[ICCV 2025] MOVE: Motion-Guided Few-Shot Video Object Segmentation

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages