Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Implementation of the paper "ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data" in TensorFlow.

License

Notifications You must be signed in to change notification settings

FranLucchini/ResUnet-a

 
 

Repository files navigation

ResUnet-a

This repository contains implementation of the paper "ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data" in TensorFlow for the detection of plot boundaries specifically.

Docker

docker build --force-rm -f resunet.Dockerfile -t resunet .
docker run --rm -it \
    --gpus all --ipc=host \
    --ulimit memlock=-1 --ulimit stack=67108864 \
    -v /home/fran/resunet_data:/resunet_data \
    -v /home/fran/ResUnet-a:/src \
    resunet bash

Usage

  1. Clone this repo using :
git clone https://github.com/Akhilesh64/ResUnet-a
  1. Install the requirements using :
pip install -r requirements.txt
  1. To start model training run the main.py file with following arguments : Example folders
python main.py --image_size 256 --batch_size 1 --num_classes 2 --epochs 5 \
               --image_path ./images --val_image_path ./val_images --test_image_path ./test_images \
               --gt_path ./gt --val_gt_path ./val_gt --test_gt_path ./test_gt \
               --layer_norm batch --model_save_path ./ --checkpoint_mode epochs
python main.py --image_size 256 --batch_size 8 --num_classes 2 --epochs 100 \
               --image_path /resunet_data/imgs_europe/train_img \
               --val_image_path /resunet_data/imgs_europe/val_img \
               --test_image_path /resunet_data/imgs_europe/test_img \
               --gt_path /resunet_data/masks_europe/train_masks \
               --val_gt_path /resunet_data/masks_europe/val_masks \
               --test_gt_path /resunet_data/masks_europe/test_masks \
               --layer_norm batch --model_save_path ./ --checkpoint_mode epochs | tee out.log
  1. To produce model predictions on a directory of test images run script predict.py with the following arguments :
python predict.py --image_size 256 --num_classes 2 --image_path ./test --model_path ./model.h5 --output_path ./results
python predict.py --image_size 256 --num_classes 2 \
                --image_path /resunet_data/Allbands_18HYE_10m_0.00_0.20_step0.20.nc/ñuble_imgs_matched \
                --model_path /resunet_data/model_e=50.h5 \
                --output_path /resunet_data/output
python predict.py --image_size 256 --num_classes 2 \
--image_path /resunet_data/muestra_train \
--model_path /resunet_data/model_e=50.h5 \
--output_path /resunet_data/muestra_out
python predict.py --image_size 256 --num_classes 2 \
--image_path /resunet_data/Allbands_18HYE_10m_0.00_0.20_step0.20.nc/ñuble_imgs_matched \
--model_path /resunet_data/model_e=50.h5 \
--output_path /resunet_data/ñuble_imgs_matched_out

Results

                 Original Image                                          Groundtruth                                            Predicted

img1     gt1     result1

img2     gt2     result2

img3     gt3     result3

Citation

The arvix version of the paper can found at the following link.

If you find this repo useful please cite the original authors :

@article{DIAKOGIANNIS202094,
title = "ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data",
journal = "ISPRS Journal of Photogrammetry and Remote Sensing",
volume = "162",
pages = "94 - 114",
year = "2020",
issn = "0924-2716",
doi = "https://doi.org/10.1016/j.isprsjprs.2020.01.013",
url = "http://www.sciencedirect.com/science/article/pii/S0924271620300149",
author = "Foivos I. Diakogiannis and François Waldner and Peter Caccetta and Chen Wu",
keywords = "Convolutional neural network, Loss function, Architecture, Data augmentation, Very high spatial resolution"
}

About

Implementation of the paper "ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data" in TensorFlow.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 75.1%
  • Python 22.8%
  • Shell 1.5%
  • Dockerfile 0.6%