Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Repository for "Latent Conditioned Loco-Manipulation Using Motion Priors"

License

Unknown and 4 other licenses found

Licenses found

Unknown
LICENSE
Unknown
LICENSE-ASE
Unknown
LICENSE-CaT
Unknown
LICENSE-DRAIL
BSD-3-Clause
LICENSE-IsaacLab

Gepetto/LaCoLoco

Latent Conditioned Loco-Manipulation using Motion Priors

Website

solo

The official implementation of Latent Conditioned Loco-Manipulation using Motion Priors by Maciej Stępień, Rafael Kourdis, Constant Roux and Olivier Stasse (accepted for the 2025 IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids)).

Installation

First install the Isaac Lab version v1.4.1 with rlgames v1.6.1. Then, in the main directory of this repository, run:

pip install -e exts/ase_envs

Usage

Training has two stages: low-level controller (LLC) - a latent conditioned motion policy that can be reused, and high-level controller (HLC) - a point reaching task that demonstrates locomotion and manipulation capabilities of the motion policy.

Below you can find an example for training Solo synthetic motions with ASE DRAIL (scripts with more examples of training and running can be found in the utils directory):

EXPERIMENT_ID=pedipulation_0

python ase/run.py --task Solo-ASE-DRAIL --motion_file ase/data/motions/solo/dataset.yaml --headless --experiment_name="solo_ase_drail" --experiment_id="$EXPERIMENT_ID"

python ase/run.py --task Solo-Pedipulation-HRL-ASE-DRAIL --motion_file ase/data/motions/solo/dataset.yaml --headless --llc_checkpoint="logs/rl_games/solo_ase_drail/solo_ase_drail_$EXPERIMENT_ID/nn/solo_ase_drail.pth" --experiment_name="solo_hrl_ase_drail" --experiment_id="$EXPERIMENT_ID"

In general, a basic template for training LLC looks like this:

python ase/run.py --task {ROBOT_NAME}-{METHOD_NAME} --motion_file {DATASET_NAME}

ROBOT_NAME:

  • Solo
  • H1

METHOD_NAME:

  • ASE
  • ASE-CaT
  • ASE-DRAIL
  • ASE-DRAIL-CaT

DATASET_NAME:

  • ase/data/motions/solo/dataset.yaml (Solo synthetic)
  • ase/data/motions/solo_mocap/dataset_valid.yaml (Solo retargetted from dog motions)
  • ase/data/motions/h1/dataset.yaml (H1 synthetic)

Template for training HLC:

python ase/run.py --task {TASK_NAME}-HRL-{METHOD_NAME} --motion_file {DATASET_NAME} --llc_checkpoint={PATH_TO_LLC_CHECKPOINT}

TASK_NAME:

  • Solo-Pedipulation
  • H1-Manipulation

Acknowledgement

This work was based on ASE, DRAIL, CaT and IsaacLab.

Citation

@inproceedings{mstepien2025lacoloco,
      title={Latent Conditioned Loco-Manipulation using Motion Priors},
      author={Maciej Stępień and Rafael Kourdis and Constant Roux and Olivier Stasse},
      booktitle={IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids)},
      year={2025}
}

About

Repository for "Latent Conditioned Loco-Manipulation Using Motion Priors"

Resources

License

Unknown and 4 other licenses found

Licenses found

Unknown
LICENSE
Unknown
LICENSE-ASE
Unknown
LICENSE-CaT
Unknown
LICENSE-DRAIL
BSD-3-Clause
LICENSE-IsaacLab

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published