Thanks to visit codestin.com
Credit goes to github.com

Skip to content

GeunminHwang/DiffuseSlide

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiffuseSlide: Training-Free High Frame Rate Video Generation Diffusion

Official Implementation of DiffuseSlide:

DiffuseSlide: Training-Free High Frame Rate Video Generation Diffusion
Geunmin Hwang, Hyun-kyu Ko, Younghyun Kim, Seungryong Lee, Eunbyung Park

DiffuseSlide is a training-free framework for generating high frame-rate videos.
It leverages noise re-injection and sliding-window latent denoising to enhance temporal consistency and visual quality without additional fine-tuning.


🔧 Environment

Python version

  • Python 3.10.15

CUDA version

  • CUDA 11.8 or CUDA 12.1

Required packages

  • torch==2.1.1
  • diffusers==0.27.2

📦 Environment Setup

1. Create conda environment

conda create -n DiffuseSlide python=3.10.15 -y
conda activate DiffuseSlide

2. Install packages

For CUDA 11.8:

pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 torchmetrics xformers --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt

For CUDA 12.1:

pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 torchmetrics xformers --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt

🚀 Inference

4× Frame Rate Inference

CUDA_VISIBLE_DEVICES=0 python inference.py --config configs/4x_config.yaml

2× Frame Rate Inference

CUDA_VISIBLE_DEVICES=0 python inference.py --config configs/2x_config.yaml

📚 Citation

If you find our work useful, please consider citing:

@misc{hwang2025diffuseslide,
  title={DiffuseSlide: Training-Free High Frame Rate Video Generation Diffusion}, 
  author={Geunmin Hwang and Hyun-kyu Ko and Younghyun Kim and Seungryong Lee and Eunbyung Park},
  year={2025},
  eprint={2506.01454},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2506.01454}
}

About

Official implementation of DiffuseSlide

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages