SiteAF3 is a universal molecular interaction analysis platform based on AlphaFold3, supporting structure prediction and analysis for various receptor-ligand type combinations.
SiteAF3 is published on PNAS!
π¨ v1.1.0 Update Supporting --use_pocket_masked_af3_msa_for_embedding, enhancing binding pocket locating. See the performance in Table 1.
Receptor Types:
protein: Protein
Ligand Types:
protein: Proteinnucleic: Nucleic acid (DNA/RNA)small_molecule: Small molecule ligand / ions
| Receptor Type | Ligand Type | Example Usage |
|---|---|---|
| protein | nucleic | Protein-RNA/DNA complex |
| protein | small_molecule | Protein-drug complex |
| protein | protein | Protein-peptide interaction |
- Hotspot structure generation (
generate_hotspot.py) - Pocket structure generation (
generate_pocket.py) - Inference scripts (
run_SiteAF3.py)
Replace /PATH/TO/alphafold3/src/alphafold3/model/model.py with ./AF3_code/model.py before intalling AlphaFold3.
# Installing AlphaFold3 dependencies
# Please follow the official AlphaFold3 documentation for installation
conda activate your_AF3_env_name
conda env update --file environment.ymlYou can use the scripts here, or you can use PyMOL to build your own files.
python generate_hotspot.py \
--input_pdb /PATH/TO/pdb_file \
--receptor_type protein \
--receptor_chains A B (OPTIONAL) \
--ligand_type nucleic \
--ligand_chains C (OPTIONAL) \
python generate_pocket.py \
--input_pdb /PATH/TO/pdb_file \
--receptor_type protein \
--receptor_chains (OPTIONAL) \
--ligand_type small_molecule \
--ligand_chains (OPTIONAL) \
--hotspot_cutoff 8.0 \
--pocket_cutoff 10.0python generate_hotspot.py --input_pdb input.pdb --list_chainsHotspot files are required if enabling --use_hotspot_msa_for_embedding
python run_SiteAF3.py \
--config_file /PATH/TO/JSON_file \
--output_dir /PATH/TO/output_dir \
--use_pocket_msa_for_embedding (OPTIONAL) \
--use_hotspot_msa_for_embedding (OPTIONAL) \
--use_af3_msa_for_embedding (OPTIONAL) \
--use_pocket_masked_af3_msa_for_embedding (v1.1.0 OPTIONAL) \
--verboseIn the JSON configuration file for run_SiteAF3.py,
See more JSON cases in test_input folder.
{
"name": "my_complex",
"receptor": [{
"rec_struct_path": "input.pdb",
"fixed_chain_id": ["A", "B"],
"hotspot_path": "/PATH/TO/input_hotspot.pdb",
"pocket_path": "/PATH/TO/input_pocket.pdb"
}],
"ligand": [{
"type": "rna",
"chain_id": "C",
"sequence": "..."
}],
"modelSeeds": [42, 123, 456]
}The program automatically detects chain types based on:
- Atom check: Search for characteristic atoms (CA atomsβprotein, P atomsβnucleic acid)
- Residue ratio: Count ratio of standard amino acids and nucleic acid residues
- Small molecule identification: Exclude water molecules and ions, identify ligand molecules
- Atom count: Small molecules typically have 1-200 heavy atoms
- Element composition: Molecules containing non-standard elements
Automatically selects based on molecule type:
- Protein: CA atoms
- Nucleic acid: P atoms or C4' atoms
- Small molecule: Geometric center
output_dir/
βββ seed_{1}
β βββ confidences.json
β βββ summary_confidences.cif
β βββ info.json
β βββ model.cif
β βββ ranking_scores.csv
β βββ sample_{0}
β β βββ model.cif
β β βββ confidences.json
β β βββ summary_confidences.cif
β βββ sample_{1}
β βββ ......
βββ seed_{2}
βββ ......
Prediction accuracy across biomolecular complexes
Use the --verbose parameter to get detailed debugging information.
8/31/2025
- Fix the bug of baseline model in V1.1.0
- Support CCD when using multiple ligands as input
7/12/2025
Supporting --use_pocket_masked_af3_msa_for_embedding, enhancing binding pocket locating.
7/6/2025
Features:
- π― Support for multiple receptor-ligand combinations
- π§ Compatible to Alphafold3
- 𧬠Intelligent molecular recognition system
- π Flexible configuration system
- π οΈ Parallel processing support
Issues and Pull Requests are welcome!
This project is licensed under the MIT License - see the LICENSE file for details.
If you use SiteAF3 in your research, please cite:
@article{doi:10.1073/pnas.2521048122,
journal = {Proceedings of the National Academy of Sciences},
doi = {10.1073/pnas.2521048122},
issn = {0027-8424},
number = {44},
publisher = {Proceedings of the National Academy of Sciences},
title = {Accurate site-specific folding via conditional diffusion based on AlphaFold3},
volume = {122},
author = {Tang, Haocheng and Wang, Junmei},
note = {[Online; accessed 2025-11-06]},
date = {2025-10-30},
year = {2025},
month = {10},
day = {30},
}
@software{siteaf3,
title={SiteAF3: Universal Molecular Interaction Analysis Platform},
author={Haocheng Tang},
year={2025},
url={https://github.com/HaCTang/SiteAF3}
}