Thanks to visit codestin.com
Credit goes to github.com

Skip to content

a universal molecular interaction modeling platform based on AlphaFold3, supporting structure prediction and analysis for various receptor-ligand type combinations.

License

Notifications You must be signed in to change notification settings

HaCTang/SiteAF3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

60 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SiteAF3: Accurate Site-specific Folding via Conditional Diffusion Based on Alphafold3

Version Python License

Introduction

SiteAF3 is a universal molecular interaction analysis platform based on AlphaFold3, supporting structure prediction and analysis for various receptor-ligand type combinations.

SiteAF3 is published on PNAS!

🚨 v1.1.0 Update Supporting --use_pocket_masked_af3_msa_for_embedding, enhancing binding pocket locating. See the performance in Table 1.

Figure 1

Core Features

🎯 Supported Molecule Types

Receptor Types:

  • protein: Protein

Ligand Types:

  • protein: Protein
  • nucleic: Nucleic acid (DNA/RNA)
  • small_molecule: Small molecule ligand / ions

πŸ“Š Supported Molecule Combinations

Receptor Type Ligand Type Example Usage
protein nucleic Protein-RNA/DNA complex
protein small_molecule Protein-drug complex
protein protein Protein-peptide interaction

πŸ”§ Main Tools

  1. Hotspot structure generation (generate_hotspot.py)
  2. Pocket structure generation (generate_pocket.py)
  3. Inference scripts (run_SiteAF3.py)

Installation

Dependencies

Replace /PATH/TO/alphafold3/src/alphafold3/model/model.py with ./AF3_code/model.py before intalling AlphaFold3.

# Installing AlphaFold3 dependencies
# Please follow the official AlphaFold3 documentation for installation
conda activate your_AF3_env_name
conda env update --file environment.yml

Quick Start

1. Generate hotspot and pocket files

You can use the scripts here, or you can use PyMOL to build your own files.

python generate_hotspot.py \
    --input_pdb /PATH/TO/pdb_file \
    --receptor_type protein \
    --receptor_chains A B (OPTIONAL) \
    --ligand_type nucleic \
    --ligand_chains C (OPTIONAL) \

python generate_pocket.py \
    --input_pdb /PATH/TO/pdb_file \
    --receptor_type protein \
    --receptor_chains (OPTIONAL) \
    --ligand_type small_molecule \
    --ligand_chains (OPTIONAL) \
    --hotspot_cutoff 8.0 \
    --pocket_cutoff 10.0

2. View chain information

python generate_hotspot.py --input_pdb input.pdb --list_chains

3. Structure prediction

Hotspot files are required if enabling --use_hotspot_msa_for_embedding

python run_SiteAF3.py \
    --config_file /PATH/TO/JSON_file \
    --output_dir /PATH/TO/output_dir \
    --use_pocket_msa_for_embedding (OPTIONAL) \
    --use_hotspot_msa_for_embedding (OPTIONAL) \
    --use_af3_msa_for_embedding (OPTIONAL) \
    --use_pocket_masked_af3_msa_for_embedding  (v1.1.0 OPTIONAL) \
    --verbose

SiteAF3 Main Program Configuration

In the JSON configuration file for run_SiteAF3.py, See more JSON cases in test_input folder.

{
    "name": "my_complex",
    "receptor": [{
        "rec_struct_path": "input.pdb",
        "fixed_chain_id": ["A", "B"],
        "hotspot_path": "/PATH/TO/input_hotspot.pdb",
        "pocket_path": "/PATH/TO/input_pocket.pdb"
    }],
    "ligand": [{
        "type": "rna",
        "chain_id": "C",
        "sequence": "..."
    }],
    "modelSeeds": [42, 123, 456]
}

Advanced Features

Intelligent Chain Classification

The program automatically detects chain types based on:

  1. Atom check: Search for characteristic atoms (CA atoms→protein, P atoms→nucleic acid)
  2. Residue ratio: Count ratio of standard amino acids and nucleic acid residues
  3. Small molecule identification: Exclude water molecules and ions, identify ligand molecules
  4. Atom count: Small molecules typically have 1-200 heavy atoms
  5. Element composition: Molecules containing non-standard elements

Representative Atom Selection

Automatically selects based on molecule type:

  • Protein: CA atoms
  • Nucleic acid: P atoms or C4' atoms
  • Small molecule: Geometric center

Output Files

File Structure

output_dir/
β”œβ”€β”€ seed_{1}
β”‚   β”œβ”€β”€ confidences.json
β”‚   β”œβ”€β”€ summary_confidences.cif
β”‚   β”œβ”€β”€ info.json
β”‚   β”œβ”€β”€ model.cif
β”‚   β”œβ”€β”€ ranking_scores.csv
β”‚   β”œβ”€β”€ sample_{0}
β”‚   β”‚   │── model.cif
β”‚   β”‚   β”œβ”€β”€ confidences.json
β”‚   β”‚   β”œβ”€β”€ summary_confidences.cif
β”‚   β”œβ”€β”€ sample_{1}           
β”‚   └── ......      
β”œβ”€β”€ seed_{2} 
└── ......  

Testing and Validation

Result summary

Prediction accuracy across biomolecular complexes Table 1

Troubleshooting

Use the --verbose parameter to get detailed debugging information.

Version 1.1.1 - Bug Fix and Broader CCD Support

8/31/2025

  • Fix the bug of baseline model in V1.1.0
  • Support CCD when using multiple ligands as input

Version 1.1.0 - Universal Molecule Type Support

7/12/2025

Supporting --use_pocket_masked_af3_msa_for_embedding, enhancing binding pocket locating.

Version 1.0.0 - Universal Molecule Type Support

7/6/2025

Features:

  • 🎯 Support for multiple receptor-ligand combinations
  • πŸ”§ Compatible to Alphafold3
  • 🧬 Intelligent molecular recognition system
  • πŸ“ Flexible configuration system
  • πŸ› οΈ Parallel processing support

Contributing

Issues and Pull Requests are welcome!

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If you use SiteAF3 in your research, please cite:

@article{doi:10.1073/pnas.2521048122,
journal = {Proceedings of the National Academy of Sciences},
doi = {10.1073/pnas.2521048122},
issn = {0027-8424},
number = {44},
publisher = {Proceedings of the National Academy of Sciences},
title = {Accurate site-specific folding via conditional diffusion based on AlphaFold3},
volume = {122},
author = {Tang, Haocheng and Wang, Junmei},
note = {[Online; accessed 2025-11-06]},
date = {2025-10-30},
year = {2025},
month = {10},
day = {30},
}

@software{siteaf3,
  title={SiteAF3: Universal Molecular Interaction Analysis Platform},
  author={Haocheng Tang},
  year={2025},
  url={https://github.com/HaCTang/SiteAF3}
}

About

a universal molecular interaction modeling platform based on AlphaFold3, supporting structure prediction and analysis for various receptor-ligand type combinations.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages