Thanks to visit codestin.com
Credit goes to github.com

Skip to content

This project aims to help kagglers with progressing on kaggle competitions maximizing their chances to be in top positions on the leaderboard

Notifications You must be signed in to change notification settings

Hemankit/Kaggle-competition-assist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

43 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– Kaggle Competition Assistant

A multi-agent AI system that surpasses ChatGPT for Kaggle competitions by providing context-aware, targeted guidance with momentum preservation.

Python 3.11 License: MIT AWS


🎯 Why This Exists

ChatGPT is great, but for Kaggle competitions it:

  • ❌ Loses context between sessions
  • ❌ Gives generic advice (not competition-specific)
  • ❌ Can't track your progress
  • ❌ Doesn't integrate with Kaggle's ecosystem

This tool fixes all of that.


✨ Key Features

10 Specialized AI Agents

  1. CompetitionSummaryAgent - Deep competition analysis
  2. NotebookExplainerAgent - Top solution insights
  3. DiscussionHelperAgent - Community wisdom
  4. ErrorDiagnosisAgent - Instant debugging
  5. CodeFeedbackAgent - Best practice reviews
  6. ProgressMonitorAgent - Stagnation detection
  7. TimelineCoachAgent - Competition planning
  8. MultiHopReasoningAgent - Cross-domain insights
  9. IdeaInitiatorAgent - Novel approach generation
  10. CommunityEngagementAgent - Feedback analysis

Multi-Model LLM Architecture

  • Groq (Llama 3.3 70B) - Code handling
  • Gemini (2.5 Flash) - Fast retrieval
  • Perplexity (Sonar) - Strategic reasoning
  • Ollama (CodeLlama) - Deep scraping

Smart Caching

  • ⚑ 15x faster repeat queries (25s β†’ 1.5s)
  • 🎯 Zero quality loss (caches detailed responses)
  • πŸš€ Production-ready performance

Modern UI

  • πŸŒ™ Beautiful dark theme
  • πŸ’¬ Chat persistence
  • πŸ” Competition autocomplete
  • πŸ“Š LangGraph visualization

πŸš€ Quick Start

5-Minute Test

# 1. Clone & setup
git clone https://github.com/YOUR-USERNAME/Kaggle-competition-assist.git
cd Kaggle-competition-assist
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt

# 2. Configure API keys
cp .env.example .env
# Add your API keys to .env

# 3. Run backend (separate terminal)
python minimal_backend.py

# 4. Run frontend (separate terminal)
streamlit run streamlit_frontend/app.py

# 5. Open http://localhost:8501 and try these queries:

Test Queries:

1. "What is the evaluation metric for Titanic?"
   (Wait 20s, then ask SAME question again - see 15x speedup!)

2. "Review my code: df['target_mean'] = df['target'].mean()"
   (Watch it catch data leakage!)

3. "Give me ideas for Titanic competition"
   (Get competition-specific advice!)

πŸ“– Full guide: See docs/USER_GUIDE.md


πŸ“Š Architecture

User Query
    ↓
Intent Router (keyword-based)
    ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   10 Specialized Agents         β”‚
β”‚   ↕                              β”‚
β”‚   4 LLM Providers                β”‚
β”‚   (Groq, Gemini, Perplexity)    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    ↓
ChromaDB Cache (15x speedup!)
    ↓
Final Response (1-2s!)

Tech Stack

  • Backend: Flask + Python 3.11
  • Frontend: Streamlit (dark theme)
  • LLM Orchestration: LangChain, CrewAI, AutoGen, LangGraph
  • Vector DB: ChromaDB (RAG pipeline)
  • Scraping: Playwright + Kaggle API
  • Deployment: AWS EC2 (production-ready)

πŸ“ˆ Performance

Query Type First Time Cached Speedup
Evaluation metric 20-30s 1-2s 15x
Data description 25-30s 1-2s 15x
Code review 15-20s N/A N/A
Multi-agent ideas 30-60s N/A N/A

Cache Hit Rate: ~80% in production


🎯 vs ChatGPT

Feature ChatGPT This Tool
Competition-specific data ❌ Generic βœ… Actual Kaggle data
Progress tracking ❌ None βœ… Leaderboard integration
Context preservation ❌ Forgets βœ… Remembers everything
Community integration ❌ No βœ… Discussion analysis
Code review ⚠️ Generic βœ… Competition-aware
Caching ❌ Slow every time βœ… 15x faster repeats
Strategic agents ❌ None βœ… 10 specialized agents

πŸ“ Project Structure

Kaggle-competition-assist/
β”œβ”€β”€ agents/                 # 10 specialized AI agents
β”œβ”€β”€ orchestrators/          # CrewAI/AutoGen/LangGraph
β”œβ”€β”€ workflows/              # LangGraph workflows
β”œβ”€β”€ llms/                   # Multi-model LLM config
β”œβ”€β”€ RAG_pipeline_chromadb/  # Vector database
β”œβ”€β”€ scraper/                # Playwright scraping
β”œβ”€β”€ Kaggle_Fetcher/         # Kaggle API
β”œβ”€β”€ streamlit_frontend/     # Dark mode UI
β”œβ”€β”€ docs/                   # Complete documentation
β”‚   β”œβ”€β”€ USER_GUIDE.md       # πŸ‘ˆ Start here!
β”‚   β”œβ”€β”€ QUICK_START.md
β”‚   β”œβ”€β”€ AWS_DEPLOYMENT_GUIDE.md
β”‚   └── [12+ more guides]
β”œβ”€β”€ minimal_backend.py      # Flask backend (3,200+ lines)
└── requirements.txt        # All dependencies

πŸš€ Deployment

AWS EC2 (Recommended)

Just created an AWS instance? Start here: NEXT_STEPS_AFTER_AWS_INSTANCE.md

Quick References:

Automated Scripts:

  • deployment_script.sh - One-command setup
  • setup_services.sh - Service configuration
  • transfer_env_to_ec2.ps1 - Transfer .env (Windows)

Complete guide: docs/AWS_DEPLOYMENT_GUIDE.md

Quick deploy (30 minutes):

# 1. Launch t3.micro Ubuntu instance (FREE tier!)
# 2. SSH in and run:
wget https://raw.githubusercontent.com/YOUR-USERNAME/Kaggle-competition-assist/main/deployment_script.sh
chmod +x deployment_script.sh
./deployment_script.sh

# 3. Transfer .env, then:
./setup_services.sh

# 4. Access at http://YOUR-EC2-IP

πŸ“ Documentation


πŸ§ͺ Try It Now

Live Demo: [YOUR-AWS-URL] (coming soon)

Test Locally:

git clone https://github.com/YOUR-USERNAME/Kaggle-competition-assist.git
cd Kaggle-competition-assist
# Follow Quick Start above

πŸ’¬ Feedback & Testing

We want YOUR feedback! Try the tool and let us know:

Quick Feedback

  1. Try 3 queries from docs/QUICK_START.md
  2. Compare to ChatGPT
  3. Share your experience on LinkedIn or GitHub Issues

Detailed Feedback

Use the template in docs/USER_GUIDE.md

Found a Bug?

Open an issue with:

  • Query you tried
  • Expected vs actual behavior
  • Screenshots if possible

πŸ† Stats

  • Lines of Code: 6,200+
  • Agents: 10 specialized
  • LLM Providers: 4 (Groq, Gemini, Perplexity, Ollama)
  • Performance Gain: 15x (cache)
  • Development Time: 2 weeks
  • Documentation Pages: 12+

🀝 Contributing

Contributions welcome! Check out:

  • Open issues
  • Feature requests
  • Documentation improvements

Areas we'd love help with:

  • More competition support
  • Additional agents
  • UI/UX improvements
  • Performance optimization

πŸ“„ License

MIT License - See LICENSE file


πŸ™ Acknowledgments

Built with:


πŸ“ž Contact

  • LinkedIn: [Your LinkedIn]
  • GitHub: [Your GitHub]
  • Email: [Your Email]

🎯 Roadmap

  • More competitions support
  • Advanced notebook analysis
  • Real-time collaboration
  • Mobile app
  • API for programmatic access

⭐ If you find this useful, please star the repo and share with fellow Kagglers!

πŸš€ Built by a Kaggler, for Kagglers. Let's dominate competitions together!


πŸ”₯ See It In Action

LangGraph Visualization

Multi-agent workflow showing 13 nodes and intelligent routing


Last Updated: October 2025

About

This project aims to help kagglers with progressing on kaggle competitions maximizing their chances to be in top positions on the leaderboard

Resources

Stars

Watchers

Forks

Packages

No packages published