Chengfeng Zhao1, Junbo Qi2, Zhiyang Dou3, Minchen Li4, Ziwei Liu5, Wenping Wang6, Yuan Liu1,5,â€
1The Hong Kong University of Science and Technology  Â
2Waseda University  Â
3The University of Hong Kong  Â
4Carnegie Mellon University  Â
5Nanyang Technological University  Â
6Texas A&M University
†Corresponding author
We tested our environment on Ubuntu 20.04 LTS with CUDA 12.1, gcc 9.4.0, and g++ 9.4.0.
conda create python=3.10 --name unic
conda activate unic
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
git clone https://github.com/unlimblue/KNN_CUDA.git
cd KNN_CUDA
make && make install
cd ..Thanks to the following work that we refer to and benefit from:
- Codebook Matching: the categorical encoder architecture and the Unity project framework;
- NeRF-Pytorch: the neural field implementation;
- SMPL-to-FBX: the FBX Python SDK usage;
- HOOD: the visualization code
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.