Thanks to visit codestin.com
Credit goes to github.com

Skip to content

JLiu-1/E3D-LSTM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Eidetic 3D LSTM in PyTorch

This is an unofficial and partial PyTorch implementation of "Eidetic 3D LSTM: A Model for Video Prediction and Beyond" [1]

Implementeds E3D-LSTM and a trainer for traffic flow prediction on TaxiBJ dataset[2]

Modifications

  • By default uses a cheaper "Scaled Dot-Product"[3] attention.
  • Adds more "LayerNorm"[4] for faster training.

Installation

  1. Download TaxiBJ[2] dataset into ./data/ folder.
  2. Install dependencies from Pipfile. By default installs CPU-only Pytorch.

Usage

python src/trainer.py

Todo

  • Fix TODOs
  • Do qualitative verification.
  • Introduce configs
  • Add visuals.

References

[1] Y Wang, L Jiang, MH Yang, LJ Li, M Long, L Fei-Fei. Eidetic 3D LSTM: A Model for Video Prediction and Beyond.
[2] Junbo Zhang, Yu Zheng, Dekang Qi. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.
[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need.
[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.

About

Unofficial PyTorch implementation of E3D-LSTM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%